DOI QR코드

DOI QR Code

Shearing Characteristics of Aluminium Rods Using Plane Strain - Shear Box Test and Close Range Photogrammetric Technique

평면변형률 전단시험과 근거리 사진계측기법을 통한 알루미늄 봉의 전단특성

  • 이용주 (서울과학기술대학교 건설공학부) ;
  • 송기정 (서울과학기술대학교 건설공학부)
  • Received : 2010.01.06
  • Accepted : 2010.05.25
  • Published : 2010.08.31

Abstract

To simulate two-dimensional plane-strain conditions in the laboratory model test, the side frictional resistance between the soil and thick glass or plastic sheet of the soil container should be reduced as much as possible. However, in fact this side friction cannot be removed completely. In this paper, the ground model simulated as a multi-sized aluminium rod mixture was introduced to get rid of the side frictional resistance and applied to the laboratory shear box test. In addition, an application of the close range photogrammetric technique to the shear box test was validated. As a result, it was found that a mean value of dilation angle from the close range photogrammetry was close to the dilation angle defined by the curve of shear strain vs. volumetric strain.

지반모형실험에서 2차원 평면변형률 상태를 모사하기 위해서는 흙을 담을 수 있는 두꺼운 유리 또는 플라스틱 시트의 토조가 필요하며, 이 때 흙과 접촉되는 토조벽면에서의 마찰저항을 최소화 하여야 한다. 하지만, 실제로 이러한 벽면마찰을 완전히 제거할 수는 없다. 본 연구에서는 벽면 마찰저항을 제거하기 위해 다양한 지름을 갖는 알루미늄 봉 지반모델을 도입하고 실내전단시험에 적용하였다. 또한 근거리 사진계측기법을 전단시험에 적용해 유용성을 검증하였다. 그 결과, 근거리 사진계측으로부터 얻은 평균 팽창각은 전단시험의 전단변형률-체적변형률 곡선으로부터 얻는 팽창각에 근접함을 확인할 수 있었다.

Keywords

References

  1. Allersma, H. G. B., Stuit, H. G. and Holscher, P. (1994), "Using image processing in soil mechanics", XIII ICSMFE, New Delhi, India, pp.1341-1344.
  2. Allersma, H. G. B. (1996), "Using image processing in field measurement", Geotechnique, Vol.46, No.3, pp.561-563. https://doi.org/10.1680/geot.1996.46.3.561
  3. Atkinson, J. H. and Bransby, P. L. (1978), The Mechanics of Soils - An Introduction to Critical State Soil Mechanics, McGraw-Hill, UK.
  4. Chen, J., Robson, S., Cooper, M. A. R. and Taylor, R. N. (1996), "An evaluation of three different image capture methods for measurement and analysis of deformation within a geotechnical centrifuge", International Archives of Photogrammmetry and Remote Sensing, Vol.XXXI, Part B5, Vienna, pp.70-75.
  5. Fang, Y. S., Chen, T. J., Holtz, R. D. and Lee, W. F. (2003), "Reduction of Boundary Friction in Model Tests", Geotechnical Testing Journal, Vol.27, No.1, pp.3-12.
  6. James, R. G. (1971), "Some aspects of soil mechanics model testing", Stress-strain behaviour of soils, edited by Parry, R. H. G., Proceedings of the Roscoe Memorial Symposium, Cambridge University, pp.417-440.
  7. Lambe, T. W. and Whitman, R. V. (1979), Soil Mechanics, SI Version, John Wiley & Sons, New York.
  8. Murayama, S. and Matsuoka, H. (1969), "On the settlement of granular media caused by the local yielding in the media", Proc. of JSCE, No.172, pp.31-41.
  9. Taylor, D. W. (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, New York.
  10. Taylor, R. N., Grant, R. J., Robson, S. and Kuwano, J. (1998), "An image analysis for determining plane and 3-D displacements in soil models", Centrifuge 98, Kimura, T., Kusakabe, O. and Takemura, J. (eds.), Rotterdam, Balkema, Vol.1, pp.73-78.
  11. White, D. J., Take, M. D., Bolton, M. D. and Munachen, S. E. (2001), "A deformation measurement system for geotechnical testing based on digital image, close-range photogrammetry, and PIV image analysis", 15th ICSMFE, Istanbul, Turkey, Rotterdam, Balkema, pp.539-542.
  12. Yamamoto, K. and Kusuda, K. (2001), "Failure mechanisms and bearing capacities of reinforced foundations", Geotextiles and Geomembranes, Vol.19, pp.127-162. https://doi.org/10.1016/S0266-1144(01)00003-6
  13. Yamamoto, K. and Jun, O. (2002), "Bearing capacity and failure mechanism of reinforced foundations based on rigid-plastic finite element formulation", Geotextiles and Geomembranes, Vol.20, pp. 367-393. https://doi.org/10.1016/S0266-1144(02)00031-6