• 제목/요약/키워드: Plane Failure

검색결과 549건 처리시간 0.024초

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.

Wind-induced fragility assessment of urban trees with structural uncertainties

  • Peng, Yongbo;Wang, Zhiheng;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.45-56
    • /
    • 2018
  • Wind damage of urban trees arises to be a serious issue especially in the typhoon-prone areas. As a family of tree species widely-planted in Southeast China, the structural behaviors of Plane tree is investigated. In order to accommodate the complexities of tree morphology, a fractal theory based finite element modeling method is proposed. On-site measurement of Plane trees is performed for physical definition of structural parameters. It is revealed that modal frequencies of Plane trees distribute in a manner of grouped dense-frequencies; bending is the main mode of structural failure. In conjunction with the probability density evolution method, the fragility assessment of urban trees subjected to wind excitations is then proceeded. Numerical results indicate that small-size segments such as secondary branches feature a relatively higher failure risk in a low wind level, and a relatively lower failure risk in a high wind level owing to windward shrinks. Besides, the trunk of Plane tree is the segment most likely to be damaged than other segments in case of high winds. The failure position tends to occur at the connection between trunk and primary branches, where the logical protections and reinforcement measures can be implemented for mitigating the wind damage.

강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구 (An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint)

  • 이경진;황경민;함경원;김우범
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.137-147
    • /
    • 2012
  • 본 연구는 L형, I형 실험체에 강판 콘크리트 구조와 철근콘크리트 구조를 적용하여 이질접합부를 만들고, 실험체에 반복하중을 파괴 시 까지 가력하여 면외 휨 내력 및 면내 전단 내력을 평가하고 구조특성을 검토하기 위해서 실험연구를 수행하였다.본 연구에서 면외 휨 성능실험은 접합부에서 정착부 수직철근이 인발되면서 파괴되었고, 면내 전단성능실험은 기초부에서의 휨 균열이 발생하여 파괴되었으며, 이론식과의 비교결과 최대 내력이 실험값/이론값의 결과가 면외 휨성능실험은 96%, 면내 전단성능실험은 82%의 값을 나타내었다.

횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식 (Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock)

  • 이연규;최병희
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.174-180
    • /
    • 2011
  • 횡등방성 암석의 강도해석에 활용할 목적으로 이방성 Mohr-Coulomb 파괴조건식을 제안하였다. 제안된 파괴조건식에서는 Pietruszczak & Mroz(2001)가 제안한 조직텐서를 도입하여 마찰각과 점착력을 조직텐서의 스칼라함수로 정의하였다. 두 강도정수의 이방성은 주응력좌표계와 재료 주좌표계의 상대적 회전을 바탕으로 계산된다. 이방성 파괴조건식을 최대로 하는 임계면을 찾는 방법이 Lagrange 승수법에 기초하여 제안되었다. 수치삼축압축 시험을 실시한 후 삼축압축강도와 파괴면 경사각 분석을 통하여 제안된 이방성 파괴함수의 성능을 검증하였다.

쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰 (Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation)

  • 김정환;장범선;김유일
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

평면 사면의 점진적 파괴에 관한 수치해석 (Numerical Analysis on Progressive Failure of Plane Slopes)

  • 송원경;권광수
    • 터널과지하공간
    • /
    • 제7권1호
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.5-16
    • /
    • 1996
  • 실리카질 모래에 대한 많은 시험결과로부터 삼축압축시첩과 평면변형시험간의 강도관계를 밀도와 파괴시 유효평균주응력의 함수로 표현하였다. 또한 파괴시 평균주응력과 축차응력간의 응력비가 내부마찰각의 함수로 잘 규정되었으며 그 비는 내부마찰각의 증가에 따라 감소하였다. 또한 중간주응력을 최대주응력과 최소주응력으로써 표현하였으며 이론적인 파괴면의 각도와 평면변형시험에서 관찰된 파괴면의 각도가 비교적 잘 일치함이 확인되었다.

  • PDF

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.