• Title/Summary/Keyword: Pipe systems

Search Result 793, Processing Time 0.026 seconds

Design of Self Magnetization MsS Sensor Using Crossed Coils (Crossed-Coils를 이용한 자기자화 MsS센서의 설계)

  • Kim, Yi-Gon;Park, Kyung-Jo;Moon, Hong-Sik;Kim, Jae-Hyun;Ahn, Hyun-Jin;Kang, Woo-Seok;Oh, Un-Kyung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.205-208
    • /
    • 2008
  • This paper propose a advanced technique for exciting and receiving the guided torsional wave to detect flaws in pipe systems. There are some difficulties in selecting and exciting of modes by using the nickel strip attached on pipe systems, such as qualification of residual magnetic field and multi-exciting of the unwanted modes etc. In order to there difficulties we propose the new sensor, so called Crossed-coils sensor. We will prove that it is possible to select the modes to be excited and to find a optimal excitation condition for torsional mode by using the proposed sensor.

  • PDF

A Study on Vibrational Characteristics of Piping Systems in Petrochemical Plants Considering the Fluid Velocity and Pressure (유체의 속도와 압력을 고려한 석유화학 플랜트 배관계의 진동특성에 대한 연구)

  • Kim, Kyoung-Hoon;Kim, Jeong-Hoon;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1053-1060
    • /
    • 2006
  • This paper consider an initially deformed state caused by the pressurized fluid flowing through the pipe at a constant velocity. When the initial forte is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases. However, when the initial tension took into account, the natural frequencies are not changed with the change of the flow velocity. As the internal pipe pressure is increased the natural frequencies are also slightly increased. In free vibrational simulation of piping systems in petrochemical plants, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies. In this study, calculate the mass matrix and stiffness matrix of piping system by MATLAB

  • PDF

Design of Self Magnetization MsS Sensor Using Crossed Coils (Crossed-Coils를 이용한 자기자화 MsS센서의 설계)

  • Kim, Yi-Gon;Park, Kyung-Jo;Moon, Hong-Sik;Kim, Jae-Hyun;Ahn, Hyun-Jin;Kang, Woo-Seok;Oh, Un-Kyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.856-862
    • /
    • 2008
  • This paper propose a advanced technique for exciting and receiving the guided torsional wave to detect flaws in pipe systems. There are some difficulties in selecting and exciting of modes by using the nickel strip attached on pipe systems, such as qualification of residual magnetic field and multi-exciting of the unwanted modes etc. In order to there difficulties we propose the new sensor, so called Crossed-coils sensor. We will prove that it is possible to select the modes to be excited and to find a optimal excitation condition for torsional mode by using the proposed sensor.

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Development of Pipe-Inspection System Using Computer Vision

  • Park, Chan-ho;Lee, Byungryoung;Soonyoung Yang;Kyungkwan Ahn;Hyunog Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.1-99
    • /
    • 2002
  • In this paper, a computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplacian operator with input image which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along t...

  • PDF

Influence of Two Attached Lumped Masses on Dynamic Stability of a Vertical Cantilevered Pipe (외팔 수직 송수관의 동적안정성에 미치는 복수 부가질량의 영향)

  • Ryu, Bong-Jo;Jung, Seong-Ho;Yim, Kyung-Bin;Ryu, Doo-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.647-651
    • /
    • 2000
  • This paper deals with the dynamic stability of a vertical cantilevered pipe conveying fluid and having two attached masses. Some valves or other mechanical components in pipe systems can be regarded as attached lumped masses. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to discretize the equations of small motion of the pipe. Effects of attached masses on the dynamic stability of a vertical cantilevered pipe conveying fluid are investigated for various locations and magnitudes of the attached lumped masses.

  • PDF

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.

Development of Daylighting System with Modified Light Pipe for Longer Transmission Distance and Higher Illuminance

  • Vu, Hoang;Kim, Youngil;Park, Chaehwan;Park, Jongbin;Bae, Hojune;Shin, Seoyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.93-102
    • /
    • 2021
  • In this research, we present a natural lighting system with transmission distance of 30m and lighting efficiency of 35% (30m standard) for operating hours of 7h/day (based on clear sky). The system is composed of parabolic reflective mirror and modified light pipe that can secure more than 88% of light concentration efficiency. The light loss rate of newly designed light pipe transmission system is demonstrated to 0.8 %/m in the straight-line part and 2%/m in the curved part. Modified light pipe daylighting system shows better performance over fiber optic daylighting system in terms of transmission distance (1.5 times longer) and illuminance (3.05 times higher).

Two-module robotic pipe inspection system with EMATs

  • Lee, Jin-Hyuk;Han, Sangchul;Ahn, Jaekyu;Kim, Dae-Hyun;Moon, Hyungpil
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1041-1063
    • /
    • 2014
  • This work introduces a two-module robotic pipe inspection system with ultrasonic NDE device to evaluate the integrity of pipe structures. The proposed robotic platform has high mobility. The two module mobile robot platform overcomes pipe obstacle structures such as elbow, or T-branch joints by cooperative maneuvers. Also, it can climb up the straight pipeline at a fast speed due to the wheel driven mechanism. For inspection of pipe structure, SH-waves generated by EMAT are applied with additional signal processing methods. A wavelet transform is implemented to extract a meaningful and specific signal from the superposed SH-wave signals. Intensity ratio which is normalized the defect signals intensity by the maximum intensity of directly transmitted signals in the wavelet transforms spectrum is applied to evaluate defects quantitatively. It is experimentally verified that the robotic ultrasonic inspection system with EMAT is capable of non-destructive inspection and evaluation of defects in pipe structure successfully by applying signal processing method based on wavelet transform.