• Title/Summary/Keyword: Pile diameter

Search Result 346, Processing Time 0.02 seconds

A Study on Behavior of Pull-out Loaded Suction Pile in Sands (사질토지반에서 인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.944-955
    • /
    • 2009
  • In this thesis the model tests were performed to the pull-out characteristics of a suction pile subjected to a pull-out in sands. For this model tests, three different soil conditions ($D_r$=45, 65, 82%), three pile diameters (D=100, 150, 200mm) and three pile lengths (L=100, 150, 200mm), were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate pull-out resistances increased as the relative density of sands, pile diameter, length and the ratio of pile length to diameter increased. The ultimate pull-out resistance by Meyerhof method(1973) overestimated that by the model test, but the results using the soil-pile friction angle suggested by Aas(1966) in the Meyerhof(1973) method were in good agreement with the experimental results.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

A Case Study of large diameter steel pipe pile Foundation for Offshore LNG Facility (해상 LNG 인수시설 대구경 강관말뚝 시공 사례 연구)

  • You, Dae-Young;Kim, Hyung-Wook;Jang, Woo-Young;Choi, Ki-Byung;Cho, Sung-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.70-77
    • /
    • 2010
  • In this paper, a case study of drivability and bearing capacity of large diameter steel pipe piles at PTT LNG site in Thailand is introduced. The LNG facilities were designed to be founded on steel pipe pile foundations driven into the weathered rock formation overlaid by sand layers. The drivability analyses of open ended pipe piles were carried out using GRL WEAP program and the bearing capacities of the piles were estimated. Dynamic load tests were performed to evaluate end bearing resistance, and it is shown that the measured end bearing resistance is smaller than the calculated end bearing because the plugging does not develop sufficiently in case of large diameter pipe piles.

  • PDF

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

Case Study for Construction Cost Saving by means of Economic Pile Design Procedure (말뚝기초의 경제적인 설계절차에 의한 건설비용 절감 사례 연구)

  • Choi, Yong-Kyu;Lim, Jong-Seok;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.73-84
    • /
    • 2003
  • In this study, the economic pile design procedure using the proof test results was proposed. In order to improve the inappropriate pile design routine, the proof test for 6 pile cases were performed and the construction saving effect were analyzed. The saving rate of construction cost with the small diameter piles and the large diameter drilled shafts were 34 - 47 and 0 - 55 %, respectively.

  • PDF

Downward Method of H-PILE Alternative Materials of Percusion Rotary Drill (PRD시공시 H-PILE 대체 자재로 원가절감 할수 있는 공법 사례)

  • Lee, Wang-Hee;Lee, Il-Jae;Iim, Si-Nae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.199-202
    • /
    • 2014
  • In recent years the downtown, Top-down method has been applied in a major method to solve the complaints due to noise, vibration, dust and safety issues such as cracking due to settlement when the excavation close to the building. Until it is installed underground permanent foundation, the Pre-founded Column is a pile foundation as well as a column to bear the upper construction load. The Pre-founded Column is constructed by PRD method generally. The EnP(Enlarging Pile) method can be expanded locally boring diameter of the embedment zone as compared to the PRD method existing general. Since the bearing capacity is increased by the boring diameter is expanded, the embedment length is reduced, the construction cost is reduced.

  • PDF

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : I. Test-bed Construction and Field Loading Test (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : I. 시험시공과 현장재하시험)

  • Lee, Jongwon;Lee, Dongseop;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2014
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. The advantages of helical piles are no need for boring or grout process, and ability to install with relatively light devices. The bearing capacity of the helical pile is exerted by integrating the bearing capacity of each helix plate attached to the steel shaft. In this paper, to estimate the bearing capacity of moderate-size helical piles, 6 types of helical piles were constructed with different shaft diameter, plate configuration and the penetration depth. A series of field loading tests was performed to evaluate the effect of helical pile configuration on the bearing capacity of helical pile, constructed in two different shaft diameters (i.e. 73 mm and 114 mm). In the same way, the diameter of bearing plate was also changed from 400mm to 250mm with one or three plates. As well, the penetration depth was varied from 3m to 6m to analyze the relation between the penetration depth and the bearing capacity. As a result, not only the increase of the shaft diameter, but also the number or diameter of helix bearing plates enhances the bearing capacity. Especially the configuration of the helix plate is more critical than the shaft diameter.

The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence (시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석)

  • Park, Jong-Jeon;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Skin friction may be one of the most critical factors in designing the prebored and precast pile. Special attention was given to the interface behavior of cement milk-surrounding soil during the installation of prebored and precast pile. Small-scale field model pile test was conducted for the case of single pile. The size and geometry of the small-scale field model piles were designed with pile length 1.3m, boring diameter 0.067 m. Quick maintain-load test was conducted for the cases of boring diameter 150, 125, 90, 86, 74 mm and water-cement ratio 90, 70, 60%. It was shown that the bearing capacity of the pile increased as the cement-water ratio and cement milk thickness increased. Considering the scale effect between the small-scale model test and the actual construction site, it was found that cement milk thickness of 0.1~0.4D (50~200 mm) was reasonable for the stability of the structure. Also, the proper cement paste water / cement ratio was about 70% when considering the results of this study and quality control.

A Study on Perimeter Load Transfer Fuctions of the Large Diameter Drilled Shafts Depending on Soil Types During the Static Pile Load Tests (정재하시험시 지반종류별 대구경 현장타설말뚝의 주면하중전이함수에 관한 연구)

  • Jung, Ho-Young;Hwang, Seong Chun;Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.163-170
    • /
    • 2011
  • Perimeter load transfer functions were developed by an analysis of the static pile load test results of the 7 large diameter drilled shafts constructed in domestic areas. Using the pile axial load distributions obtained from the static pile load tests of large diameter drilled shafts, the unit skin frictions were analyzed and, based on unit skin friction test data, perimeter load transfer functions could be suggested. The load transfer distributions calculated by suggested functions and the load transfer functions obtained from the bi-directional pile load tests were compared. As a result, the 2 load transfer distributions were coincided, respectively.