• 제목/요약/키워드: Piezoelectric material properties

검색결과 629건 처리시간 0.025초

수중 음향 트랜스듀서의 송수신 감도를 고려한 1-3형 압전복합체의 구조 최적화 (Optimization of 1-3 Piezoelectric Composites Considering Transmitting and Receiving Sensitivity of Underwater Acoustic Transducers)

  • 이재영;표성훈;노용래
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.790-800
    • /
    • 2013
  • The optimal structure of 1-3 piezocomposites has been determined by controlling polymer properties, ceramic volume fraction, thickness of composite and aspect ratio of the composite to maximize the TVR (transmitting voltage response), RVS (receiving voltage sensitivity) and FBW (fractional bandwidth) of underwater acoustic transducers. Influence of the design variables on the transducer performance was analyzed with equivalent circuits and the finite element method. When the piezocomposite is vibrating in a pure thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorate the performance of the piezocomposite. In this work, a new method to design the structure of the 1~3 type piezocomposite was proposed to maximize the TVR, RVS and FBW while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used in the optimal design.

고주파 SAW Filter 의 제작과 Filter 특성 (Fabrication and Characteristics of High Frequency SAW Filler)

  • 이동욱;김동수;강성건;류근걸;남효덕;이만형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.56-59
    • /
    • 1997
  • SAW filters of transversal type were fabricated on some piezoelectric substrates of the LN 128$^{\circ}$ Y-X, LN 64$^{\circ}$Y-X, Quartz ST-cut wafers through the simulation in which the number o: IDT and window function were changed for the required frequency, and the mask making. Their IDT spacing and width were 3 ${\mu}{\textrm}{m}$, chip size was 4.462 $\times$ 2.086 mm$^2$, and they had double electrode transversal type IDTs. In addition to pure Al electrode devices, Ti thin films having the different thicknesses was introduced between the Al electrode and the substrate for improving the power resistance strength. They had 11-12 dB insertion losses similar to those of pure Al electrode SAW filters in case of LN 128$^{\circ}$ Y-X, LN 64$^{\circ}$ Y-X, meaning that Ti thin film was not detrimental to the insertion loss and general frequency properties. The filters had the center frequencies 162MHz for LN 128$^{\circ}$ Y-X, 186MHz for 64$^{\circ}$ Y-X, and 131MHz for Quartz ST-cut substrates.

  • PDF

Pb$[(Mn_{1/3}Sb_{2/3})_{0.04}\;Zr_x\;Ti_y]O_3$ 세라믹스의 압전 및 강유전특성 (Piezoelectric and Ferroelectric Properties of Pb$[(Mn_{1/3}Sb_{2/3})_{0.04}\;Zr_x\;Ti_y]O_3$ Ceramics)

  • 이용현;조정호;김병익;최덕균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.257-257
    • /
    • 2007
  • 압전 액츄에이터의 효율적 작동을 위해서는 변위량이 크고 이력이 없으며 응답이 빠르고 온도특성이 좋아야 하는 등의 여러 조건들을 만족시켜야 한다. 따라서 본 실험은 압전 효율은 높이고 압전 손실은 낮추기 위하여 Pb$[(Mn_{1/3}Sb_{2/3})_{0.04}\;Zr_x\;Ti_y]O_3$, 세라믹스를 선정하였으며 Zr/Ti의 변화(x=0.47~0.5, y=0.46~0.49)에 따른 각각의 압전 특성 및 강유전 특성을 조사하였다. 일반적인 산화물 합성법을 이용하여 압전 분말을 제조하였고 EMAS standard(6001)에 근거하여 시편을 제조하였다. XRD 관찰결과 모든 조성에서 perovskite구조의 단일상만을 나타내는 소결체를 얻을 수 있었으며 FE-SEM 관찰결과 $1250^{\circ}C$의 소결시편이 $2-3{\mu}m$의 grain size를 갖는 치밀한 미세구조를 나타내었다. 가장 우수한 압전특성을 나타내는 조성은 Zr/Ti의 비가 0.485/0.475 조성이었으며 그때의 전기기계 결합계수(Kp) 값은 62.5%였고, 기계적 품질계수(Qm) 값은 1004였다.

  • PDF

파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성 (Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications)

  • 안정학;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

기계적인 부하 인가하에서 적층형 압전 액츄에이터의 비선형 특성 (Non linear properties of multilayer piezoelectric actuator under compressive stress in static electric fields)

  • 하문수;정순종;고중혁;이대수;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.684-687
    • /
    • 2004
  • 일반적으로 적층형 압전 액츄에이터의 변위는 액츄에이터의 내부 적층수와 압전정수($d_{33}$)에 비례적으로 증가한다. 그러나 압전현상을 이용한 액츄에이터는 전기적, 기계적 부하에 의한 dipole 거동을 보이기 때문에 domain wall에 의한 압전정수의 비선형 거동을 보인다. 본 논문에서는 PMN-PZ-PT 세라믹스를 이용하여 $2{\times}3{\times}10$ (mm)의 적층형 세라믹 액츄에이터를 제조 후 1kV/mm의 일정한 전계를 인가하고 $0\sim990N$의 기계적 부하 인가하에서 적층형 세라믹 액츄에이터의 비선형 특성을 조사하였다. 압전 액츄에이터의 비선형 거동은 기계적 응력에 의한 유전 및 전왜 특성에 영향주고, 액츄에이터의 변위 특성은 유전 및 전왜 특성의 영향에 크게 의존한다.

  • PDF

비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교 (Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics)

  • 정승운;임지호;정한보;지성엽;최승곤;정대용
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

탄소섬유의 게이지 계수 측정 및 센서 응용 (Measurement of a gauge factor of a carbon fiber and its application to sensors)

  • 김지관;박창신;이동원
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.162-167
    • /
    • 2008
  • In this paper we report on the electrical properties of carbon fiber which is an attractive material for strain gauges and can also be applied to resonating micro sensors. The carbon fibers used in this research was manufactured from polyactylonitrile (PAN). The fabricated carbon fibers had about $10\;{\mu}m$ in length and several centimeters in length. We employed a micro structure to measure electrical properties of the carbon fiber. The measured electrical resistivity of the carbon fibers were about $3{\times}10^{-3}{\Omega}{\cdot}cm$ A gauge factor of the carbon fiber is also observed with the same system and it was about 400, depending on the structure of the carbon fiber. For the sensor applications of the carbon fiber, it is selectively placed between the gap of Al electrodes using a dielectrophoresis method. When the carbon fiber is resonated by a piezoelectric ceramic, resistance change at a variety of resonance mode was observed through an electrical system.

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정 (Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

Application of computer methods in music composition using smart nanobeams

  • Ying Shi;Maryam Shokravi;X. Chen
    • Advances in nano research
    • /
    • 제17권3호
    • /
    • pp.285-291
    • /
    • 2024
  • The paper considers one of the new applications of computer methods in music composition, using smart nanobeams-an integration of advanced computational techniques with new, specially designed materials for enhanced performance capabilities in music composition. The research applies some peculiar properties of smart nanobeams, embedded with piezoelectric materials that modulate and control sound vibrations in real-time. The study is conducted to determine the effects of changes in the length, thickness of nanobeams and the applied voltage on acoustical properties and the tone quality of musical instruments with the help of numerical simulations and optimization algorithms. By means of piezo-elasticity theory, different governing equations of nanobeam systems can be derived, which are solved by the numerical method to predict the dynamic behavior of the system under different conditions. Results show that manipulation of the parameters allows great control over pitch, timbre, and resonance of the instrument; such a system offers new ways in which composers and performers can create music. This research also validates the computational model against available theoretical data, proving the accuracy and possible applications of the former. The work thus marks a large step towards the intersection of music composition with smart material technology, and, when further developed, it would mean that smart nanobeams could revolutionize the process for composing and performing music on these instruments.