DOI QR코드

DOI QR Code

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics

비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교

  • Jung, Seungwoon (Department of Materials Science and Engineering, Inha University) ;
  • Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University) ;
  • Jung, Han-Bo (Department of Materials Science and Engineering, Inha University) ;
  • Ji, Sung-Yub (Department of Materials Science and Engineering, Inha University) ;
  • Choi, Seunggon (Department of Materials Science and Engineering, Inha University) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
  • 정승운 (인하대학교 신소재공학과) ;
  • 임지호 (인하대학교 신소재공학과) ;
  • 정한보 (인하대학교 신소재공학과) ;
  • 지성엽 (인하대학교 신소재공학과) ;
  • 최승곤 (인하대학교 신소재공학과) ;
  • 정대용 (인하대학교 신소재공학과)
  • Received : 2020.04.23
  • Accepted : 2020.06.22
  • Published : 2020.07.27

Abstract

NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

Keywords

References

  1. M.-H. Zhang, H. Ch. Thong, Y. X. Lu, W. Sun, J.-F. Li and K. Wang, J. Korean Ceram. Soc., 54, 261 (2017). https://doi.org/10.4191/kcers.2017.54.4.10
  2. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). https://doi.org/10.1021/ja500076h
  3. H. Zhang, Y. Zhu, P. Fan, M. A. Marwat, W. Ma, K. Liu, H. Liu, B. Xie, K. Wang and J. Koruza, Acta Mater., 156, 389 (2018). https://doi.org/10.1016/j.actamat.2018.07.005
  4. C.-K. Park, D. K. Kang, S. H. Lee, Y.-M. Kong and D.-Y. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017). https://doi.org/10.4313/JKEM.2017.30.9.541
  5. J.-H. Park, H.-J. Park and B.-C. Choi, Korean. J. Mater. Res., 26, 721 (2016). https://doi.org/10.3740/MRSK.2016.26.12.721
  6. D. Lee, H. Vu, H. Sun, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, Ceram. Int., 42, 18894 (2016). https://doi.org/10.1016/j.ceramint.2016.09.038
  7. E. Uwiragiye, M. U. Farooq, S.-H. Moon, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, J. Eur. Ceram. Soc., 37, 4597 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.015
  8. G. Han, J. Ryu, C.-W. Ahn, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, J. H. Choi and D.-S. Park, J. Am. Ceram. Soc., 95, 1489 (2012). https://doi.org/10.1111/j.1551-2916.2012.05139.x
  9. A. Rahman, K.-H. Cho, C.-W. Ahn, J. Ryu, J.-J. Choi, J.-W. Kim, W.-H. Yoon and B.-D. Hahn, J. Eur. Ceram. Soc., 38, 1416 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.028
  10. C.-W. Ahn, H.-Y. Lee, G. Han, S. Zhang, S.-Y. Choi, J.-J. Choi, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park, B.-D. Hahn and J. Ryu, Sci. Rep., 5, 17656 (2015). https://doi.org/10.1038/srep17656
  11. H. Wang, D. Ruan, Y.-J. Dai, X-W Zhang, Curr. Appl. Phys., 12, 504 (2012). https://doi.org/10.1016/j.cap.2011.08.014
  12. C. Uthaisar, P. Kantha, R. Yimnirun and S Pojprapai, Integrated Ferroelectrics, 149, 114 (2013). https://doi.org/10.1080/10584587.2013.853588
  13. Y. Guo, K.-I. Kakimoto and H. Ohsato, Jpn. J. Appl. Phys., 43, 6662 (2004). https://doi.org/10.1143/JJAP.43.6662
  14. J.-H. Lim, J.-S. Lee, S.H. Lee, H.-B. Jung, C. Park, C.-W. Ahn, I.-R. Yoo, K.-H. Cho and D.-Y. Jeong, Korean J. Mater. Res., 29, 205 (2019). https://doi.org/10.3740/MRSK.2019.29.4.205
  15. C.-W. Ahn, C.-S. Park, C.-H. Choi, S. Nahm, M.-J. Yoo, H.-G. Lee and S. Priya, J. Am. Ceram. Soc., 92, 2033 (2009). https://doi.org/10.1111/j.1551-2916.2009.03167.x
  16. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, Ting Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). https://doi.org/10.1021/ja500076h
  17. C.-W. Ahn, A. Rahman, J. Ryu, J.-J. Choi, J.-W. Kim, W.-H. Yoon and B.-D. Hahn, Cryst. Growth Des., 16, 6586 (2016). https://doi.org/10.1021/acs.cgd.6b01287
  18. J. W. Mullin, Crystallization, 4th ed., p. 190-195, Elsevier, Oxford (2004).
  19. A. C. Zettlemoyer, Nuclation, p. 131-136, Marcell Dekker, New York (1969).