DOI QR코드

DOI QR Code

Optimization of 1-3 Piezoelectric Composites Considering Transmitting and Receiving Sensitivity of Underwater Acoustic Transducers

수중 음향 트랜스듀서의 송수신 감도를 고려한 1-3형 압전복합체의 구조 최적화

  • Lee, Jaeyoung (Department of Sensor and Display Engineering, Kyungpook National University) ;
  • Pyo, Seonghun (Department of Mechanical Engineering, Kyungpook National University) ;
  • Roh, Yongrae (Department of Mechanical Engineering, Kyungpook National University)
  • 이재영 (경북대학교 센서 및 디스플레이공학과) ;
  • 표성훈 (경북대학교 기계공학과) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2013.10.11
  • Accepted : 2013.10.16
  • Published : 2013.11.01

Abstract

The optimal structure of 1-3 piezocomposites has been determined by controlling polymer properties, ceramic volume fraction, thickness of composite and aspect ratio of the composite to maximize the TVR (transmitting voltage response), RVS (receiving voltage sensitivity) and FBW (fractional bandwidth) of underwater acoustic transducers. Influence of the design variables on the transducer performance was analyzed with equivalent circuits and the finite element method. When the piezocomposite is vibrating in a pure thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorate the performance of the piezocomposite. In this work, a new method to design the structure of the 1~3 type piezocomposite was proposed to maximize the TVR, RVS and FBW while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used in the optimal design.

Keywords

References

  1. T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Su-32, 481 (1985).
  2. R. E. Newnham, Ferroelect, 68, 1 (1986). https://doi.org/10.1080/00150198608238734
  3. E. K. Akdogan, M. Allahverdi, and A. Safari, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 52, 746 (1986).
  4. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull., 13, 525 (1978). https://doi.org/10.1016/0025-5408(78)90161-7
  5. A. Christine, H. Hennion, and J. N. Decarpigny, J. Acoust. Soc. Am., 94, 621 (1993). https://doi.org/10.1121/1.406878
  6. L. Bowen, R. Gentilman, D. Fiore, H. Pham, W. Serwatka, C. Near, and B. pzaol, Ferroelect., 187, 109 (1996). https://doi.org/10.1080/00150199608244847
  7. K. C. Benjamin, J. Electroceramics, 8, 145 (2002). https://doi.org/10.1023/A:1020508130249
  8. C. Richard, L. Goufon, D. Guyomar, H. S. Lee, and G. Grange, Ultrason, 40, 895 (2002). https://doi.org/10.1016/S0041-624X(02)00221-4
  9. G. R. Harris and P. M. Gammell, J. Acoust. Soc. Am., 115, 2914 (2004). https://doi.org/10.1121/1.1707090
  10. L. V. Giviansky and S. Torquato, Struct. Optim., 13, 23 (1997). https://doi.org/10.1007/BF01198372
  11. O. Sigmund, S. Torquato and I. A. Aksay, J. Mater. Res., 13, 1038 (1998). https://doi.org/10.1557/JMR.1998.0145
  12. B. A. Auld and Y. Wang, IEEE Ultrason. Symp., 528 (1984).
  13. D. Certon, F. Patat, F. Levassort, G. Feuillard, and B. Karlsson, J. Acoust. Soc. Am., 101, 2043 (1997). https://doi.org/10.1121/1.418136
  14. P. Reynolds, J. Hyslop, and G. Hayward, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2, 1650 (2003).
  15. F. Craciun, L. Sorba, E. Molinari, and M. Pappalardo, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 36, 50 (1989). https://doi.org/10.1109/58.16968
  16. Y. Wang, Ph. D. Dissertation, Stanford University (1986).
  17. D. Robertson, G. Hayward, A. Gachagan, and V. Murray, IEEE Trans. Ultrason., Ferroelect,. Freq. Contr., 53, 1503 (2006). https://doi.org/10.1109/TUFFC.2006.1665108
  18. C. N. Della and D. Shu, Sens. Actuators A Phys., 140, 2000 (2007).
  19. L. L. Beranek, Acousitcs (Mcgraw-Hill, New York, 1954).
  20. W. A. Smith and B. A. Auld, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 38, 40 (1991). https://doi.org/10.1109/58.67833
  21. W. A. Smith, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 40, 41 (1993). https://doi.org/10.1109/58.184997
  22. J. F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1985).
  23. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 1985).