• Title/Summary/Keyword: Physical characterization

Search Result 637, Processing Time 0.029 seconds

Physical Properties of High-Solid Coatings with Acrylic Resins Containing Caprolactone Group and HDI-Trimer (Caprolactone기 함유 아크릴수지와 HDI-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Jo, Hye-Jin;Shim, Il-Woo;You, Hyuk-Jae;Wu, Jong-Pyo;Kim, Myung-Soo;Hahm, Hyun-Sik;Park, Hong-Soo;Baik, Woon-Phil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.300-305
    • /
    • 2004
  • High-solid coatings were prepared by blending of previosly synthesized acrylic resins and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The impact resistance, cross-hatch adhesion, $60^{\circ}$specular gloss, and heat resistance of the films proved to be good, and the pencil hardness and drying time proved to be slightly poor. Especially, there was a remarkable improvement in the heat resistance. This improvement may stem from the regular arrangement of ethyl groups introduced into the acrylic resin. As a result of Rigid-body pendulum visco-elasticity measurement, dynamic $T_g$ values of cured films increased with dynamic $T_g$ values.

Preparation of Reactive Flame Retardant Coatings Containing Phosphorus II. Preparation and Characterization of Polyurethane Coatings (반응형 인계 난연도료의 제조 II. 폴리우레탄 도료의 제조 및 도막특성)

  • Kim, Sung-Rae;Park, Hyong-Jin;Jung, Choong-Ho;Park, Hong-Soo;Im, Wan-Bin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Two-component polyurethane flame retardant coatings (ATTBC) were prepared by blending polyisocyanate (TDI-adduct) with ATTBs mentioned at the previous paper. Most of the physical properties of the flame retardant coatings were comparable to those of non-flame retardant coatings. Especially, the hardness, impact resistance, and accelerated weathering resistance were remarkably improved with the increase of the content of 1,4-butanediol. Coatings containing 10 and 15 wt% 1,4-butanediol, ATTBC-10C and ATTBC-15C, were not flammable in vertical flame-retardancy test. Their char area recorded 1.1${\sim}$11.6 $cm^2$ in 45$^{\circ}$ eckel burner method.

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering

  • You, Yil-Hwan;Bae, Seung-Muk;Kim, Young-Hwan;Hwang, Jinha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Copper-oxide (CuO) thin films were prepared by reactive sputtering of Cu onto Si wafers and characterized using a statistical design of experiments approach. The most significant factor in controlling the electrical resistivity and deposition rate was determined to be the $O_2$ fraction. The deposited CuO thin films were characterized in terms of their physical and chemical properties, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and 4-point resistance measurements. The deposited copper thin films were characterized by XPS and XRD analyses to consist of $Cu^{2+}$. The CuO thin films of highest resistivity exhibited superior rectifying responses with regard to n-type Si wafers, with a current ratio of $3.8{\times}10^3$. These superior responses are believed to be associated with the formation of a charge-depletion region originating from the p-type CuO and n-type Si materials.

Characterization of Density-of-States in Polymer-based Organic Thin Film Transistors and Implementation into TCAD Simulator

  • Kim, Jaehyeong;Jang, Jaeman;Bae, Minkyung;Lee, Jaewook;Kim, Woojoon;Hur, Inseok;Jeong, Hyun Kwang;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • In this work, we report extraction of the density-of-states (DOS) in polymer-based organic thin film transistors through the multi-frequency C-V spectroscopy. Extracted DOS is implemented into a TCAD simulator and obtained a consistent output curves with non-linear characteristics considering the contact resistance effect. We employed a Schottky contact model for the source and drain to fully reproduce a strong nonlinearity with proper physical mechanisms in the output characteristics even under a very small drain biases. For experimental verification of the model and extracted DOS, 2 different OTFTs (P3HT and PQT-12) are employed. By controlling the Schottky contact model parameters in the TCAD simulator, we accurately reproduced the nonlinearity in the output characteristics of OTFT.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

Optimization of Aqueous Nano Ceramic Ink and Printing Characterization for Digital Ink-Jet Printing

  • Kwon, Jong-Woo;Sim, Hee-Seok;Lee, Jong-Heun;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho;Kim, Ung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.478-483
    • /
    • 2017
  • The advantage of ceramic ink-jet printing technology is the accurate and fast printing process of digital images for various products. For digital ink-jet printing applications, ceramic ink requires proper viscosity and surface tension, along with dispersion stability of the inorganic pigments. The purpose of this study is the formulation of an environment-friendly ceramic ink with a water-based system; using nano-sized $CoAl_2O_4$ pigment as a raw material, ink should have dispersion stability to prevent nozzle clogging during ink-jet printing process. In addition, the surface tension of the ceramic ink was optimized with the polysiloxane surfactant according to the surface tension requirement (20 - 45 mN/m) for ceramic ink-jet printing; by adjusting the viscosity with poly ethylene oxide, jetting behavior of the ceramic ink was investigated according to changes in the physical features through drop watcher measurement.

Preparation and Characterization of Copper Oxychloride from Acidic Copper Chloride Etchant (PCB 산업에서 배출되는 산성 염화동 폐액으로부터 Copper Oxychloride의 제조 및 특성분석)

  • 김영희;김수룡;정상진;이윤주;어영선
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2003
  • Copper oxychloride used as an agricultural fungicide has been recovered from copper-containing waste etchant by the neutralization with alkali hydroxides. Large amount of copper-containing waste etchant is generated from Printed Circuit Board industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the waste is important. Recycling process of copper oxychloride from the waste etchant is discovered through the our study. In the range of reaction temp. 2$0^{\circ}C$-4$0^{\circ}C$, pH 5-7, pure copper oxychloride was able to prepare and the yield of copper oxychloride was higher than 95%. Physical properties of the sample have been characterized using SEM, XRD, TGA, ICP and Atomic absorption spectroscopy.

Structural properties of carbon nanotubes: The effect of substrate-biasing (기판 바이어스에 따른 탄소 나노튜브의 구조적 물성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.36-37
    • /
    • 2006
  • Both negative and positive substrate bias effects on the structural properties and field-emission characteristics are investigated. carbon nanotubes (CNTs) are grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. Characterization using various techniques, such as field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of CNTs grown can be changed and controlled by the application of substrate bias during CNT growth. It is for the first time observed that the prevailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negative biasing would be more effectively role in the vertical-alignment of CNTs compared to positive biasing. However, the CNTs grown under the positively bias condition display much better electron emission capabilities than those grown under negative bias or without bias. The reasons for all the measured data regarding the structural properties of CNTs are discussed to confirm the correlation with the observed field-emissive properties.

  • PDF

Characterization of Pigment-Producing Kocuria sp. K70 and the Optimal Conditions for Pigment Production and Physical Stability (색소생성 균주 Kocuria sp. K70의 특징과 색소생성 최적 조건 및 물리적 안정성)

  • Kim, Young-Sook;Park, Jin-Sook
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.513-519
    • /
    • 2010
  • Marine bacterium producing pigment was isolated from the solar saltern of Mijo-myeon, Namhae, Korea. Based on phenotypic characteristics and 16S rRNA sequence analysis, the strain was identified as Kocuria sp., which produced a yellow pigment. The pigment showed UV absorption maximum at 469nm. The bacterial strain grew well on Marine broth 2216 culture medium. Productivity of the pigment reached the maximum value after 44 hours at $30^{\circ}C$, 2% NaCl and pH 6.0. The pigment was produced best when supplied by 1% lactose as a carbon source and 1% beef extract as a nitrogen source. The result of the color stability study showed that pigment extracted from the strain by ethanol was stable at $-20-25^{\circ}C$ and also showed higher stability over 70% for 14 days in light conditions at $25^{\circ}C$. The pigment extract was also stable for all metal ions tested, except for $FeCl_2$.