• Title/Summary/Keyword: Photoelectron

Search Result 1,597, Processing Time 0.026 seconds

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells (직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동)

  • Kim, Byung-Ju;Seo, Min-Kang;Choi, Kyeong-Eun;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst (V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구)

  • Choi, Gyeong Ryun;Yeo, Jong Hyeon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.646-652
    • /
    • 2020
  • In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.

Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination (플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성)

  • Lee, Raneun;Lim, Chaehun;Kim, Min-Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage (효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화)

  • Go, Hyunju;Park, Yiseul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide (Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응)

  • Baek, Seo-Hyeon;Youn, Kyunghee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.159-168
    • /
    • 2022
  • Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

The Role of Acid in the Synthesis of Red-Emitting Carbon Dots (장파장 형광 탄소 양자점 제조에 있어서 산의 역할에 대한 연구)

  • Yun, Sohee;Lee, Jinhee;Choi, Jin-sil
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.309-314
    • /
    • 2022
  • Carbon dots (CDs) are few nanometer-sized carbon-based nanoparticles and emerging candidate materials in various fields such as biosensors and bioimaging due to their excellent optical properties and high biocompatibility. However, most CDs, emitting blue light, have limited their application in biomedical fields due to the low penetration of short-wavelength lights into the biological system. Therefore, there has been enormous need to develop long-wavelength emitting CDs. In this study, red-emitting CDs were successfully synthesized through the hydrothermal reaction of p-phenylenediamine with hydrochloric acid. In addition, the effect of the amount of hydrochloric acid on the formation of carbon dots, resulting in the variation of the chemical structures of CDs, were investigated, which was confirmed with the intensive structural analyses using infrared and X-ray photoelectron spectroscopy. It was found that the chemical structure of CDs governed their optical properties and quantum yield. Therefore, this study provides an insight into the role of acid in forming red-emitting CDs as the optimal probe for biomedical application.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Aqueous Boron Adsorption on Carbonized Nanofibers Prepared from Electrospun Polyacrylonitrile(PAN) Mats (전기방사 후 탄소화된 폴리아크릴로니트릴(PAN) 나노섬유의 수용액 중 붕소 흡착)

  • Hong, So Hee;Han, Sun-Gie;Kim, Su Young;Won, Yong Sun
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.210-217
    • /
    • 2022
  • Boron(B) is a rare resource used for various purposes such as glass, semiconductor materials, gunpowder, rocket fuel, etc. However, Korea depends entirely on imports for boron. Considering the global boron reserves and its current production rate, boron will be depleted on earth in 50 years. Thus, a process including proper adsorbent materials recovering boron from seawater is demanded. This research proposed carbonized nanofibers prepared from electrospun PAN(polyacrylonitrile) mats as promising materials to adsorb boron in aqueous solution. First, the mechanism of boron adsorption on carbonized nanofibers was investigated by DFT(density functional method)-based molecular modeling and the calculated energetics demonstrated that the boron chemisorption on the nitrogen-doped graphene surface by a two-step dehydration is possible with viable activation energies. Then, the electrospun PAN mats were stabilized in air and then carbonized in an argon atmosphere before being immersed in the boric acid aqueous solution. Analytically, SEM(scanning electron microscopy) and Raman measurements were employed to confirm whether the electrospinning and carbonization of PAN mats proceeded successfully. Then, XPS(X-ray photoelectron spectroscopy) peak analysis showed whether the intended nitrogen-doped carbon nanofiber surface was formed and boron was properly adsorbed on nanofibers. Those results demonstrated that the carbonized nanofibers prepared from electrospun PAN mats could be feasible adsorbents for boron recovery in seawater.