DOI QR코드

DOI QR Code

Aqueous Boron Adsorption on Carbonized Nanofibers Prepared from Electrospun Polyacrylonitrile(PAN) Mats

전기방사 후 탄소화된 폴리아크릴로니트릴(PAN) 나노섬유의 수용액 중 붕소 흡착

  • Hong, So Hee (Department of Chemical Engineering, Pukyong National University) ;
  • Han, Sun-Gie (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Su Young (Department of Chemical Engineering, Pukyong National University) ;
  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University)
  • 홍소희 (국립부경대학교 화학공학과) ;
  • 한선기 (국립부경대학교 화학공학과) ;
  • 김수영 (국립부경대학교 화학공학과) ;
  • 원용선 (국립부경대학교 화학공학과)
  • Received : 2022.05.02
  • Accepted : 2022.06.24
  • Published : 2022.09.30

Abstract

Boron(B) is a rare resource used for various purposes such as glass, semiconductor materials, gunpowder, rocket fuel, etc. However, Korea depends entirely on imports for boron. Considering the global boron reserves and its current production rate, boron will be depleted on earth in 50 years. Thus, a process including proper adsorbent materials recovering boron from seawater is demanded. This research proposed carbonized nanofibers prepared from electrospun PAN(polyacrylonitrile) mats as promising materials to adsorb boron in aqueous solution. First, the mechanism of boron adsorption on carbonized nanofibers was investigated by DFT(density functional method)-based molecular modeling and the calculated energetics demonstrated that the boron chemisorption on the nitrogen-doped graphene surface by a two-step dehydration is possible with viable activation energies. Then, the electrospun PAN mats were stabilized in air and then carbonized in an argon atmosphere before being immersed in the boric acid aqueous solution. Analytically, SEM(scanning electron microscopy) and Raman measurements were employed to confirm whether the electrospinning and carbonization of PAN mats proceeded successfully. Then, XPS(X-ray photoelectron spectroscopy) peak analysis showed whether the intended nitrogen-doped carbon nanofiber surface was formed and boron was properly adsorbed on nanofibers. Those results demonstrated that the carbonized nanofibers prepared from electrospun PAN mats could be feasible adsorbents for boron recovery in seawater.

붕소(Boron)은 희소자원으로 유리, 반도체 재료, 화약 등 다양한 용도로 사용되고 있는데, 우리나라의 경우 붕소를 전량 수입에 의존하고 있으며 전 세계 붕소 매장량과 현재 추세의 생산량을 고려하면 50년 이후 지상의 붕소는 고갈될 확률이 높다. 따라서 안정적 붕소의 공급을 위해 해수 내의 붕소를 회수할 수 있는 소재 및 공정의 개발이 요구된다. 이에 본 연구에서는 수용액 중 붕소를 회수하기 위한 소재로 전기방사 후 탄소화된 폴리아크릴로니트릴(polyacrylonitrile, PAN) 나노섬유를 도입하였다. 먼저 탄소섬유 표면의 붕소 흡착 기작을 이론적으로 구현하기 위해 범밀도함수이론(density functional method) 기반의 분자모델링 작업을 수행하였는데, 계산된 에너지도(energetics)에 따르면 붕소가 탄소섬유 표면에 흡착되는 화학반응이 가능한(viable) 것으로 판단되었다. 한편 전기방사로 제작된 PAN 나노섬유를 대기 중에서 안정화를 진행한 후 아르곤(Ar) 분위기에서 탄소화하였고 붕산 수용액에 담지시켰다. SEM과 Raman 분석을 통해 각각 전기방사와 탄소화가 잘 진행되었는지 확인하였고, XPS 분석을 통해 탄소섬유 표면에 질소가 잘 도핑되었는지 여부와 붕소의 흡착 여부를 확인하였다. 결과적으로 전기방사된 PAN으로부터 제작된 탄소섬유는 해수 내 붕소 회수에 사용될 수 있는 소재로 판단된다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었습니다(C-D-2021-0765).

References

  1. Jung, S., and Kim, M.-J., "Trends in Recovering Dissolved Boron from Wastewater and Seawater," J. of Korean Inst. of Resources Recycling, 25(4), 3-10 (2016).
  2. Eom, K. H., Jeong, H. C., An, H. Y., Lim, J.-H., Lee, J.-K., and Won, Y. S., "Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study," Korean Chem. Eng. Res., 53(6), 1-6 (2015). https://doi.org/10.9713/kcer.2015.53.1.1
  3. Kim, M.-K., Eom, K. H., Lim, J.-H., Lee, J.-K., Lee, J. D., and Won, Y. S., "Simple Boron Removal from Seawater by Using Polyols as Complexing Agents: A Computational Mechanistic Study," Korean J. Chem. Eng., 32(11), 2330-2334 (2015). https://doi.org/10.1007/s11814-015-0060-8
  4. Park, B., Lee, J., Kim, M., Won, Y. S., Lim, J.-H., and Kim, S., "Enhanced Boron Removal Using Polyol Compounds in Seawater Reverse Osmosis Processes," Desalin. Water Treat., 57, 7910-7917 (2016). https://doi.org/10.1080/19443994.2015.1038596
  5. Lee, K. S., Eom, K. H., Lim, J.-H., Ryu, H., Kim, S., Lee, D.-K., and Won, Y. S., "Aqueous Boron Removal by Using Electrospun Poly(vinyl alcohol) (PVA) Mats: A Combined Study of IR/Raman Spectroscopy and Computational Chemistry," J. Phys. Chem. A, 121, 2253-2258 (2017). https://doi.org/10.1021/acs.jpca.6b12578
  6. Wang, J., Wang, T., Li, L., Wu, P., Pan, K., and Cao, B., "Functionalization of Polyacrylonitrile Nanofiber Using ATRP Method for Boric Acid Removal from Aqueous Solution", J. Water Process. Eng., 3, 98-104 (2014) https://doi.org/10.1016/j.jwpe.2014.05.015
  7. Chen, F., Guo, L., Zhang, X., Leong, Z. Y., Yang, S., and Yang, H. Y., "Nitrogen-doped Graphene Oxide for effectively Removing Boron Ions from Seawater," Nanoscale, 9, 326-333 (2017). https://doi.org/10.1039/C6NR07448K
  8. Jo, E., Lee, S., Kim, K. T., Won, Y. S., Kim, H.-S., Cho, E. C., and Jeong, U., "Core-sheath Nanofibers Containing Colloidal Arrays in the Core for Programmable Multi-agent Delivery," Adv. Mater., 21, 968-972 (2009). https://doi.org/10.1002/adma.200802948
  9. Sun, X.-L., Liu, Z., and Cheng, Z.-L., "Design and Fabrication of in-situ N-doped Paper-like Carbon Nanofiber Film for Thiophene Removal from a Liquid Model Fuel," J. Hazard. Mater., 389, 121879 (2020). https://doi.org/10.1016/j.jhazmat.2019.121879
  10. Gaussian 09, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., and Fox, D. J., Gaussian, Inc., Wallingford CT (2016).
  11. GaussView, Version 6, Dennington, R., Keith, T. A., and Millam, J. M., Semichem Inc., Shawnee Mission, KS (2016).
  12. Becke, A. D., "A New Mixing of Hartree-Fock and Local Density-functional Theories," J. Chem. Phys., 98, 1372-1377 (1993). https://doi.org/10.1063/1.464304
  13. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J., "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem., 98, 11623-11628 (1994). https://doi.org/10.1021/j100096a001
  14. Li, X., and Frisch, M. J., "Energy-represented Direct Inversion in the Iterative Subspace within a Hybrid Geometry Optimization Method," J. Chem. Theory Comput., 2, 835-839 (2006). https://doi.org/10.1021/ct050275a