DOI QR코드

DOI QR Code

Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination

플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성

  • Lee, Raneun (Department of Applied Chemistry Engineering, Chungnam National University) ;
  • Lim, Chaehun (Department of Applied Chemistry Engineering, Chungnam National University) ;
  • Kim, Min-Ji (National Institute of Chemical Safety) ;
  • Lee, Young-Seak (Department of Applied Chemistry Engineering, Chungnam National University)
  • 이란은 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 김민지 (환경부 화학물질안전원) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2020.12.03
  • Accepted : 2021.01.03
  • Published : 2021.02.10

Abstract

Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.

실내 환경 오염물질인 휘발성 유기화합물(volatile organic compounds)인 초산에 대한 핏치계 활성탄소섬유의 흡착 성능을 향상시키기 위해 불소화를 진행하였다. 불소화에는 플라즈마 불소화와 직접 기상 불소화법을 사용하였으며, 두 가지 방식으로 불소화한 활성탄소섬유의 초산가스 흡착 성능을 고찰하였다. 불소가 도입된 활성탄소섬유의 표면 특성을 알아보기 위하여 X선 광전자 분광법(XPS)을 분석하였고 그 기공특성은 77K 질소 흡착법을 통하여 분석하였다. 초산가스의 흡착 성능은 가스 크로마토그래피를 통하여 측정하였으며, 플라즈마 불소화 된 활성탄소섬유의 파과시간이 790 min으로 650 min인 미처리 활성탄소섬유에 비해 파과시간이 지연되었음을 확인할 수 있으나, 직접 기상 불소화 표면처리한 활성탄소섬유의 파과시간은 390 min으로 오히려 흡착성능이 저해되었다. 이는 플라즈마 불소화 된 활성탄소섬유는 그 비표면적의 변화 없이, 표면에 도입된 불소 관능기가 초산가스(CH3COOH)와 정전기적 인력으로 흡착성능이 증가하였다. 반면, 직접 기상 불소화 된 활성탄소섬유는 그 비표면적이 55%까지 크게 감소하여 초산가스에 대한 물리적 흡착 효과가 현저히 감소하였다.

Keywords

References

  1. X. Yue, N. L. Ma, C. Sonne, R. Guan, S. S. Lam, Q. Van Le, X. Chen, Y. Yang, H. Gu, and J. Rinklebe, Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation, J. Hazard. Mater, 124138 (2020). https://doi.org/10.1016/j.jhazmat.2020.124138
  2. S.-K. Shin, J.-H. Kang, and J.-H. Song, Removals of formaldehyde by silver nano particles attached on the surface of activated carbon, J. Korean Soc. Environ. Eng., 32, 936-941 (2010).
  3. L. Zhu, D. Shen, and K. H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater., 389, 122102 (2020). https://doi.org/10.1016/j.jhazmat.2020.122102
  4. E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas Adsorption Characteristics of by Interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  5. H. S. Lim, M.-J. Kim, E. Y. Kong, J.-d. Jeong, and Y.-S. Lee, Effect of oxyfluorination of activated carbon fibers on adsorption of benzene gas causing sick house syndrome, Appl. Chem. Eng., 29, 312-317 (2018). https://doi.org/10.14478/ACE.2018.1007
  6. Y. Liu, K. Mallouk, H. Emamipour, M. J. Rood, X. Liu, and Z. Yan, Isobutane adsorption with carrier gas recirculation at different relative humidities using activated carbon fiber cloth and electrothermal regeneration, Chem. Eng. J., 360, 1011-1019 (2019). https://doi.org/10.1016/j.cej.2018.02.095
  7. M.-J. Kim, M.-J. Jung, M. I. Kim, S. S. Choi, and Y.-S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). https://doi.org/10.14478/ace.2015.1083
  8. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: Comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  9. W. Feng, P. Long, Y. Feng, and Y. Li, Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications, Adv. Sci., 3, 1500413 (2016). https://doi.org/10.1002/advs.201500413
  10. H. Sugiyama and Y. Hattori, Selective and enhanced CO2 adsorption on fluorinated activated carbon fibers, Chem. Phys. Lett., 758, 137909 (2020). https://doi.org/10.1016/j.cplett.2020.137909
  11. Y. J. Choi, K. M. Lee, J.-I. Han, and Y.-S. Lee, Oxyfluorination of expanded graphite: Improving the thermal properties of epoxy composites through interfacial interaction, Carbon Lett., 29, 401-409 (2019). https://doi.org/10.1007/s42823-019-00054-8
  12. M.-S. Park, K. H. Kim, and Y.-S. Lee, Fluorination of single-walled carbon nanotube: The effects of fluorine on structural and electrical properties, J. Ind. Eng. Chem., 37, 22-26 (2016). https://doi.org/10.1016/j.jiec.2016.03.024
  13. Y. Sato, T. Kume, R. Hagiwara, and Y. Ito, Reversible intercalation of HF in fluorine-GICs, Carbon, 41, 351-357 (2003). https://doi.org/10.1016/S0008-6223(02)00311-1
  14. S. J. Blanksby and G. B. Ellison, Bond dissociation energies of organic molecules, Acc. Chem. Res., 36, 255-263 (2003). https://doi.org/10.1021/ar020230d
  15. M.-J. Jung, J. W. Kim, J. S. Im, S.-J. Park, and Y.-S. Lee, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410-414 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  16. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ace.2015.1050
  17. E. J. Song, Adsorption Characteristics for Volatile Organic Compounds on Activated Carbon Fibers according to Introduction Method of Fluorine and Oxygen Functional Groups, Masters dissertation, Chungnam National University, Daejeon, Korea (2019).
  18. A. Tressaud, F. Moguet, S. Flandrois, M. Chambon, C. Guimon, G. Nanse, E. Papirer, V. Gupta, and O. P. Bahl, On the nature of CF bonds in various fluorinated carbon materials: XPS and TEM investigations, J. Phys. Chem. Solids., 57, 745-751 (1996). https://doi.org/10.1016/0022-3697(96)00343-5
  19. J. S. Im, S. K. Lee, S. J. In, and Y.-S. Lee, Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives, J. Anal. Appl. Pyrolysis., 89, 225-232 (2010). https://doi.org/10.1016/j.jaap.2010.08.003
  20. K. H. Kim, M. J. Kim, and Y.-S. Lee, Effect of CF bonds introduced by fluorination on the desalination properties of activated carbon as the cathode for capacitive deionization, Desalination, 457, 1-7 (2019). https://doi.org/10.1016/j.desal.2018.12.005
  21. Y. J. Choi, J. H. Kim, K. B. Lee, Y.-S. Lee, and J. S. Im, Correlation verification of process factors and harmful gas adsorption properties for optimization of physical activation parameters of PAN-based carbon fibers, J. Ind. Eng. Chem., 80, 152-159 (2019). https://doi.org/10.1016/j.jiec.2019.07.044
  22. H. Jo, K. H. Kim, M.-J. Jung, J. H. Park, and Y.-S. Lee, Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 409, 117-123 (2017). https://doi.org/10.1016/j.apsusc.2017.02.234
  23. M.-S. Park, K. H. Kim, M.-J. Kim, and Y.-S. Lee, NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide, Colloids Surf. A Physicochem. Eng. Asp., 490, 104-109 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.028
  24. M.-S. Park and Y.-S. Lee, Functionalization of graphene oxide by fluorination and its characteristics, J. Fluor. Chem., 182, 91-97 (2016). https://doi.org/10.1016/j.jfluchem.2015.12.011
  25. J.-H. Kim, E. Jeong, and Y.-S. Lee, Characteristics of fluorinated CNTs added carbon foams, Appl. Surf. Sci., 360, 1009-1015 (2016). https://doi.org/10.1016/j.apsusc.2015.11.111
  26. J. S. Im, T.-S. Bae, S. K. Lee, S.-H. Lee, E. Jeong, P. H. Kang, and Y.-S. Lee, Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam, Mater. Res. Bull., 45, 1641-1647 (2010). https://doi.org/10.1016/j.materresbull.2010.07.005
  27. C. Chuang, P. Chiang, and E. Chang, Modeling VOCs adsorption onto activated carbon, Chemosphere, 53, 17-27 (2003). https://doi.org/10.1016/S0045-6535(03)00357-6
  28. X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
  29. J. Kujawa, S. Al-Gharabli, W. Kujawski, and K. Knozowska, Molecular grafting of fluorinated and nonfluorinated alkylsiloxanes on various ceramic membrane surfaces for the removal of volatile organic compounds applying vacuum membrane distillation, ACS Appl. Mater. Interfaces, 9, 6571-6590 (2017). https://doi.org/10.1021/acsami.6b14835
  30. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibers, J. Fluorine Chem., 84, 127-134 (1997). https://doi.org/10.1016/S0022-1139(97)00029-8
  31. D. Dollimore, P. Spooner, and A. Turner, The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas, Surf. Technol., 4, 121-160 (1976). https://doi.org/10.1016/0376-4583(76)90024-8
  32. M. El-Merraoui, M. Aoshima, and K. Kaneko, Micropore size distribution of activated carbon fiber using the density functional theory and other methods, Langmuir, 16, 4300-4304 (2000). https://doi.org/10.1021/la991242j
  33. H. S. Lim, Effects of Fluorination and Oxy-Fluorination of Activated Carbon Fiber on Benzene Gas Adsorption, Masters dissertation, Hoseo University, Asan, Korea (2016).
  34. Y. C. Woo, Y. Chen, L. D. Tijing, S. Phuntsho, T. He, J.-S. Choi, S.-H Kim, and H. K. Shon, CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation, J. Membr. Sci., 529, 234-242 (2017). https://doi.org/10.1016/j.memsci.2017.01.063