DOI QR코드

DOI QR Code

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage

효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화

  • Go, Hyunju (Department of Chemical Engineering, Pukyong National University) ;
  • Park, Yiseul (Department of Chemical Engineering, Pukyong National University)
  • 고현주 (부경대학교 화학공학과) ;
  • 박이슬 (부경대학교 화학공학과)
  • Received : 2021.01.07
  • Accepted : 2021.01.22
  • Published : 2021.03.31

Abstract

A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.

태양에너지를 활용하여 전력을 생산하는 시스템인 Solar water battery는 광전기화학전지와 에너지저장시스템을 결합한 것으로 추가적인 외부 전압 없이 태양에너지의 전환과 저장을 동시에 할 수 있다. Solar water battery는 광전극, 저장전극 그리고 상대전극으로 구성되어 있고, 이들의 선택과 조합은 시스템의 성능과 효율에 있어 중요한 역할을 한다. 본 연구에서는 Solar water battery의 구성요소들을 변화시켜 시스템에 미치는 영향을 알고자 하였다. 상대전극이 방전 시 미치는 영향, 광전극과 저장전극의 전극 재료, 전해질의 종류에 따른 태양에너지 전환 효율과 저장 용량에 미치는 영향에 대해 연구하였다. 이들의 최적화된 구성(TiO2 : NaFe-PB : Pt foil)에서 15시간동안의 광조사 후의 방전 용량이 72.393 mAh g-1으로 시스템 구성 조건에 따라 광전환/저장 효율이 크게 영향을 받음을 확인 할 수 있었다. 또한, 유기 오염물질을 광전극 반응조내 전해질에 첨가하여 광전하를 효율적으로 분리시킴으로써 광전류 증가시켰으며, 이로 인해 저장용량이 향상되고, 동시에 오염물질도 분해시킬 수 있음을 확인하였다. 이처럼 Solar water battery는 추가적인 외부 전압이 필요없는 새로운 친환경 태양에너지 전환/저장 시스템이며, 나아가 수처리에도 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Yu, M., McCulloch, W. D., Huang, Z., Trang, B. B., Lu, J., Amine, K., and Wu, Y., "Solar-powered Electrochemical Energy Storage: An Alternative to Solar Fuels," J. Mater. Chem. A, 4, 2766-2782 (2016). https://doi.org/10.1039/C5TA06950E
  2. Dunn, B., Kamath, H., and Tarascon, J.-M., "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334, 928-935 (2011). https://doi.org/10.1126/science.1212741
  3. Hermann, W. A., "Quantifying Global Exergy Resources," Energy, 31, 1685-1702 (2006). https://doi.org/10.1016/j.energy.2005.09.006
  4. Gandhi, O., Kumar, D. S., Rodriguez-Gallegos, C. D., and Srinivasan, D., "Review of Power System Impacts at High PV Penetration Part I: Factors Limiting PV Penetration," Solar Energy, 210, 181-201 (2020). https://doi.org/10.1016/j.solener.2020.06.097
  5. Kim, G., Oh, M., and Park, Y., "Solar-rechargeable Battery based on Photoelectrochemical Water Oxidation: Solar Water Battery," Sci. Rep., 6, 33400-33408 (2016). https://doi.org/10.1038/srep33400
  6. Seo, J., Takata, T., Nakabayashi, M., Hisatomi, T., Shibata, N., Minegishi, T., and Domen, K., "Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-onset-potential Solar-driven Photoelectrochemical Water Splitting," J. Am. Chem. Soc., 137, 12780-12783 (2015). https://doi.org/10.1021/jacs.5b08329
  7. Wang, L.-P., Wang, P.-F., Wang, T.-S., Yin, Y.-X., Guo, Y.-G., and Wang, C.-R., "Prussian Blue Nanocubes as Cathode Materials for Aqueous Na-Zn Hybrid Batteries," J. Power Sources., 355, 18-22 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
  8. Choi, W., "Studies on TiO2 Photocatalytic Reactions," J. Korean Ind. Eng. Chem., 14, 1011-1022 (2003).
  9. Li, J., and Wu, N., "Semiconductor-based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: a Review," Catal. Sci. Technol., 5, 1360-1384 (2015). https://doi.org/10.1039/C4CY00974F
  10. Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., and Choi, W., "Carbon-doped TiO2 Photocatalyst Synthesized Without Using an External Carbon Precursor and the Visible Light Activity," Appl. Catal. B: Environ., 91, 355-361 (2009). https://doi.org/10.1016/j.apcatb.2009.06.001
  11. Deng, W., Zhao, H., Pan, F., Feng, X., Jung, B., Abdel-Wahab, A., Batchelor, B., and Li, Y., "Visible-light-driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition," Environ. Sci. Technol., 51, 13372-13379 (2017). https://doi.org/10.1021/acs.est.7b04206
  12. Wedege, K., Bae, D., Smith, W. A., Mendes, A., and Bentien, A., "Solar Redox Flow Batteries with Organic Redox Couples in Aqueous Electrolytes: A Minireview," J. Phys. Chem. C, 122, 25729-25740 (2018). https://doi.org/10.1021/acs.jpcc.8b04914
  13. Xie, S.-W., Chen, S., Liu, Z.-Q., and Xu, C.-W., "Comparison of Alcohol Electrooxidation on Pt and Pd Electrodes in Alkaline Medium," Int. J. Electrochem. Sci., 6, 882-888 (2011).
  14. Kolliopoulos, A. V., Kampouris, D. K., and Banks, C. E., "Indirect Electroanalytical Detection of Phenols," Analyst, 140, 3244-3250 (2015). https://doi.org/10.1039/c4an02374a
  15. Naeem, K., and Ouyang, F., "Influence of Supports on Photocatalytic Degradation of Phenol and 4-chlorophenol in Aqueous Suspensions of Titanium Dioxide," J. Environ. Sci., 25, 399-404 (2013). https://doi.org/10.1016/S1001-0742(12)60055-2
  16. Wang, B., Han, Y., Wang, X., Bahlawane, N., Pan, H., Yan, M., and Jiang, Y., "Prussian Blue Analogs for Rechargeable Batteries," iScience, 3, 110-133 (2018).
  17. Gong, K., "Vertically-aligned Sandwich Nanowires Enhance the Photoelectrochemical Reduction of Hydrogen Peroxide: Hierarchical Formation on Carbon Nanotubes of Cadmium Sulfide Quantum Dots and Prussian Blue Nanocoatings," J. Colloid Interface Sci., 449, 80-86 (2015). https://doi.org/10.1016/j.jcis.2014.10.010
  18. Phadke, S., Mysyk, R., and Anouti, M., "Effect of Cation (Li+, Na+, K+, Rb+, Cs+) in Aqueous Electrolyte on the Electrochemical Redox of Prussian Blue Analogue (PBA) Cathodes," J. Energy Chem., 40, 31-38 (2020). https://doi.org/10.1016/j.jechem.2019.01.025
  19. You, Y., Wu, X.-L., Yin, Y.-X., and Guo, Y.-G., "High-quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries," Energy Environ. Sci., 7, 1643-1647 (2014). https://doi.org/10.1039/C3EE44004D
  20. Li, L., Nie, P., Chen, Y., and Wang, J., "Novel Acetic Acid Induced Na-Rich Prussian Blue Nanocubes with Iron Defects as Cathodes for Sodium Ion Batteries," J. Mater. Chem. A, 7, 12134-12144 (2019). https://doi.org/10.1039/C9TA01965K