• Title/Summary/Keyword: Photocatalytic efficiency

Search Result 296, Processing Time 0.024 seconds

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.

Determination of Operational Parameters for TCE Degradation in Photocatalytic Oxidative Reactors (TCE의 분해를 위한 광촉매 산화반응조의 운전인자 도출에 관한 연구)

  • Hur, Joon-Moo;Cheon, Seung-Yul;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 2003
  • The objectives of this study are to manufacture an efficient $TiO_2$, photocatalyst and to delineate optimum operational parameters for TCE (trichloroethylene) degradation in a photocatalytic oxidative reactor. The $TiO_2$ photocatalyst irradiated by 365 nm UV light is expected to increase degradation of TCE in solution by a series of photocatalytic oxidations in the reactor. A new membrane $TiO_2$ photocatalyst wns eventually developed by coating a mixture of Davan-C(0.24 wt%) and PVA(0.16 wt%) on the surface of slips using the slip-casting method. Results show that increase in the number of coating of $TiO_2$ sol on surface of photocatalysts and in the surface thickness improved the endurance and photocatalysts, but these physical modifications caused significant decrease in the overall degradation efficiency of TCE. Pre-aeration or recirculation of the influents to the reactors containing TCE increased degradation efficiency of TCE. The optimum operational conditions far the surface area of photocatalysts and UV light intensity appeared to be $1.47\;mL/cm^2$ and $225\;W/cm^2{\times}100$, respectively, in the reactor. Based on the overall experimental results, the photocatalytic oxidation of TCE with the new membrane $TiO_2$ photocatalyst is found to be very effective under the operational conditions delineated in this study.

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

Evaluation on the Photodegradation Rate of NOx Using High Efficiency Visible-Light Responsive Photocatalysts (고효율 가시광 반응형 광촉매를 이용한 NOx의 광저감율 평가)

  • Cha, Ji An;An, Sang Hun;Cho, Eun hee;Kim, Tae Oh
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.165-172
    • /
    • 2010
  • Titania is widely used as an effective photocatalyst for the photodegradation of environmental pollutants in air. In this study, novel N-doped $ZrO_2/TiO_2$ photocatalysts were synthesized via sol-gel method and characterized by UV-Vis spectrophotometer, transmission electron microscope, and X-ray diffractometer. N-doped $ZrO_2/TiO_2$ photocatalysts were nano-sized with an average particle size of about 20 nm. The XRD pattern of N-doped $ZrO_2/TiO_2$ photocatalysts showed both anatase and rutile phases. The photocatalytic activity of N-doped $ZrO_2/TiO_2$ photocatalysts was evaluated by degradation of NO under UV and visible light irradiation at various parameters such as amount of photocatalyst, concentration of NO, and intensity of light. The photocatalytic activity of N-doped $ZrO_2/TiO_2$ photocatalysts was effective for the enhancement of the degradation of NO and higher than that of $TiO_2$ photocatlysts under UV and visible light irradiation.

Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

  • Giribabu, Krishnamoorthy;Suresh, Ranganathan;Manigandan, Ramadoss;Vijayaraj, Arunachalam;Prabu, Raju;Narayanan, Vengidusamy
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2910-2916
    • /
    • 2012
  • Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods.

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

A Study on the Photolytic and Photocatalytic Oxidation of VOCs in Air (대기 중 휘발성 유기화합물의 광산화 공정 및 광촉매산화 공정의 처리효율 비교)

  • 서정민;정창훈;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2002
  • Both UV Photolysis and Phtocatalytic Oxidation Processing are an emerging technology for the abatemant of Volatile Organic Compounds (VOCs) in atmospheric -pressure air streams. However, each process has some drawbacks of their own. The former is little known as an application for air pollution treatment, so it has been a rare choice in the field. Therefore we have to do more experiment and study for its application for treatment of VOCs. Although the latter has been used in the industrial fields, it still has a difficulty in decomposing high concentrations of VOCs. To solute these problems, we have been studying simultaneous application of those two technologies. We have studied the effects of background gas composition and gas temperature on the decomposition chemistry. It has shown that concentration of TCE and B.T.X., diameter of reactor, and wavelength of lamp have effects on decomposition efficiency. When using Photolysis Process only, the rates of fractional conversion of each material are found at TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. In case of Photocatalytic Oxidation Process only, the rates of fractional conversion decreased drastically above 30 ppm. When there two methods were combined, the rates of fractional conversion of each material are enhanced such as TCE 93%, Benzene 75%, Toluene 81%, Xylene 90%. Therefore, we conclude that the combination of Photolysis-Photocatalytic Oxidation process is more efficient than each individual process.

Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon (TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해)

  • Lee, Jong-Dae;Lee, Tae-Jun;Cho, Kyong-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.

The Characteristics of 〈112〉-preferred Orientation for Photocatalytic TiO2 Fabricated by CVD (CVD법에 의해 제작된 광촉매 TiO2 〈112〉 우선배향의 특성)

  • Kang, Kyoung-tae;Jhin, Jung-geun;Kang, Pil-kyu;Ro, Dae-ho;Byun, Dong-jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.436-441
    • /
    • 2003
  • The characteristics of <112> orientation were studied for the $TiO_2$thin films, which were prepared on the glass by CVD (chemical vapor deposition) at various substrate temperatures. It was confirmed that $TiO_2$ films exhibited <112>-preferred orientation in a specific temperature range. Although $TiO_2$polycrystalline film grown deposited at relatively low temperature showed the growth of random directions, the <112>-preferred orientation was gradually developed with increasing deposition temperature. According to exhibit higher degree of <112>-preferred orientation, $TiO_2$thin film showed porous surface morphology, well-developed columnar structure, and deeper voids resulted from non-aggregation of columns were observed. In addition, transmittance was enhanced. Therefore, the growth of $TiO_2$with <112>-preferred orientation is suitable for glass coating because of predominance of photocatalytic efficiency and transmittance.