References
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. https://doi.org/10.1021/cr030063a
- Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
- Brus, L. E. Appl. Phys. A: Mater. Sci. Process 1991, 53, 465. https://doi.org/10.1007/BF00331535
- Wang, J.; Uma, S.; Klabunde, K. J. Micropor. Mesopor. Mater. 2004, 75, 143. https://doi.org/10.1016/j.micromeso.2004.07.011
- Rajeshwar, K.; De Tacconi, N. R.; Chenthamarakshan, C. R. Chem. Mater. 2001, 13, 2765. https://doi.org/10.1021/cm010254z
- Wold, A. Chem. Mater. 1993, 5, 280. https://doi.org/10.1021/cm00027a008
- Linsebigler, A. L.; Li, G. Q.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
- Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. https://doi.org/10.1002/smll.200600426
- Changlin, Y.; Wanqin, Z.; Kai, Y.; Gan, R. J. Mater. Sci. 2010, 45, 5756. https://doi.org/10.1007/s10853-010-4646-6
- Sivaraj, R.; Namasivayam, C.; Kadirvelu, K. Waste Management 2001, 21, 105. https://doi.org/10.1016/S0956-053X(00)00076-3
- Nacera, Y.; Aicha, B. Chem. Eng. J. 2006, 119, 121. https://doi.org/10.1016/j.cej.2006.01.018
- Xiangqing, L.; Yin, D.; Kang, S.; Mu, J.; Wang, J.; Li, G. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 384, 749. https://doi.org/10.1016/j.colsurfa.2011.04.028
- Tito, T.; Brien, P.; Zhang, X. Chem. Mater. 1997, 9, 523. https://doi.org/10.1021/cm960363r
- Kumar, M. S.; Nillohit, M.; Anup, M.; Adhikary, B.; Karmakar, B.; Dutta, S. Inorg. Chim. Acta 2011, 371, 20. https://doi.org/10.1016/j.ica.2011.02.093
- Zhiguo, L.; Jiehe, S.; Xiaoli, L.; Wei, C. Langmuir 2011, 27, 2258. https://doi.org/10.1021/la1043552
- Rajasekhar, P. V. S. R.; Scriba, M.; Revaprasadu, N. J. Nanosci. Nanotech. 2011, 11, 1201. https://doi.org/10.1166/jnn.2011.3069
- Peter, A. A.; Damian, C. O.; Makwena, J. M. Polyhedron 2011, 30, 246. https://doi.org/10.1016/j.poly.2010.10.023
- Akram, H.; Reza, M. A. J. Mol. Struc. 2011, 985, 270. https://doi.org/10.1016/j.molstruc.2010.11.007
- Barreca, D.; Gasparotto, A.; Maragno, C.; Seraglia, R.; Tondello, E.; Venzo1, A.; Krishnan, V.; Bertagnolli, H. Appl. Organometal. Chem. 2005, 19, 1002. https://doi.org/10.1002/aoc.948
- Pradhan, N.; Katz, B.; Efrima, S. J. Phys. Chem. B 2003, 107, 13843. https://doi.org/10.1021/jp035795l
- Sahu, N.; Arora, M. K.; Upadhyay, S. N.; Sinha, A. S. K. Ind. Eng. Chem. Res. 1998, 37, 4682. https://doi.org/10.1021/ie980237s
- Park, H.; Kim, Y. K.; Choi, W. J. Phys. Chem. C 2011, 115, 6141. https://doi.org/10.1021/jp2015319
- Li, G.; Li, J.; Peng, H.; Zhang, B. Mater. Lett. 2008, 62, 1881. https://doi.org/10.1016/j.matlet.2007.10.029
- Ji, X.; Li, H.; Cheng, S.; Wu, Z.; Xie, Y.; Dong, X.; Yan, P. Mater. Lett. 2011, 65, 2776. https://doi.org/10.1016/j.matlet.2011.06.003
- Chrysochoos, J. J. Phys. Chem. 1992, 96, 2868.
- Mazher, J.; Badwe, S.; Sengar, R.; Gupta, D.; Pandey, R. K. Physica E 2003, 16, 209. https://doi.org/10.1016/S1386-9477(02)00664-1
- Wu, F.; Zhang, J. Z.; Kho, R.; Mehra, R. K. Chem. Phys. Lett. 2000, 330, 237. https://doi.org/10.1016/S0009-2614(00)01114-3
- Neelakandeswari, N.; Sangami, G.; Dharmaraj, N.; Taek, N. K.; Kim, H. Y. Spectrochim. Acta Part A: Mol. Biomol. Spectro. 2011, 78, 1592. https://doi.org/10.1016/j.saa.2011.02.008
- Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. J. Photochem.Photobiol. A: Chem. 2001, 140, 163. https://doi.org/10.1016/S1010-6030(01)00398-7
- Zhang, T.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N. Sol. Energy Mater. Sol.Cells 2002, 73, 287. https://doi.org/10.1016/S0927-0248(01)00215-X
- Wu, L.; Yu, J. C.; Fu, X. J. Mol. Catal. A: Chem. 2006, 244, 25. https://doi.org/10.1016/j.molcata.2005.08.047
- Chen, F.; Zhao, J.; Hidaka, H. Int. J. Photoenergy 2003, 5, 209. https://doi.org/10.1155/S1110662X03000345
- Priyam, A.; Chatterjee, A.; Das, S. K.; Saha, A. Chem. Commun. 2005, 4122.
Cited by
- α-Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property vol.11, pp.3, 2014, https://doi.org/10.1007/s13738-013-0335-0
- Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents vol.17, pp.3, 2015, https://doi.org/10.1007/s11051-015-2961-1
- /CdS Core-Shell Nanocomposite vol.2015, pp.2314-7490, 2015, https://doi.org/10.1155/2015/690568
- Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules vol.123, pp.6, 2017, https://doi.org/10.1007/s00339-017-1013-3
- P-Nitrophenol Degradation Using N-Doped Reduced Graphene-CdS Nanocomposites pp.18626300, 2018, https://doi.org/10.1002/pssa.201700618
- /CdS nanorods with very high photocatalytic activity for hydrogen production under visible-light excitation and investigation of the photocatalytic mechanism by femtosecond transient absorption spectroscopy vol.7, pp.88, 2017, https://doi.org/10.1039/C7RA12118K
- gas sensing properties vol.42, pp.6, 2018, https://doi.org/10.1039/C7NJ04593J
- Quantum confined CdS inclusion in graphene oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell vol.5, pp.22, 2012, https://doi.org/10.1039/c4ra13061h
- BiVO4 nanoparticles: Preparation, characterization and photocatalytic activity vol.1, pp.1, 2012, https://doi.org/10.1080/23312009.2015.1074647
- Structural tuning of CdS nanoparticles with nucleation temperature and its reflection on the optical properties vol.1094, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.04.003
- Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water vol.279, pp.None, 2012, https://doi.org/10.1016/j.cej.2015.04.069
- Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films vol.5, pp.6, 2019, https://doi.org/10.1016/j.heliyon.2019.e01851
- Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: An insight from XPS studies vol.46, pp.53, 2021, https://doi.org/10.1016/j.ijhydene.2021.05.173