This paper proposes a method to improve speech recognition performance by extracting various pronunciations of the pseudo-morpheme unit from an eojeol unit corpus and generating a new recognition unit considering pronunciation variations. In the proposed method, we first align the pronunciation of the eojeol units and the pseudo-morpheme units, and then expand the pronunciation dictionary by extracting the new pronunciations of the pseudo-morpheme units at the pronunciation of the eojeol units. Then, we propose a new recognition unit that relies on pronunciation by tagging the obtained phoneme symbols according to the pseudo-morpheme units. The proposed units and their extended pronunciations are incorporated into the lexicon and language model of the speech recognizer. Experiments for performance evaluation are performed using the Korean speech recognizer with a trigram language model obtained by a 100 million pseudo-morpheme corpus and an acoustic model trained by a multi-genre broadcast speech data of 445 hours. The proposed method is shown to reduce the word error rate relatively by 13.8% in the news-genre evaluation data and by 4.5% in the total evaluation data.
In this paper, we propose a new pre-selection of candidate units that is suitable for the unit selection based Japanese TTS system. General pre-selection method performed by calculating a context-dependent cost within IP (Intonation Phrase). Different from other languages, however. Japanese has an accent represented as the height of a relative pitch, and several words form a single accentual phrase. Also. the prosody in Japanese changes in accentual phrase units. By reflecting such prosodic change in pre-selection. the qualify of synthesized speech can be improved. Furthermore, by calculating a context-dependent cost within accentual phrase, synthesis speed can be improved than calculating within intonation phrase. The proposed method defines AP. analyzes AP in context and performs pre-selection using accentual phrase matching which calculates CCL (connected context length) of the Phoneme's candidates that should be synthesized in each accentual phrase. The baseline system used in the proposed method is VoiceText, which is a synthesizer of Voiceware. Evaluations were made on perceptual error (intonation error, concatenation mismatch error) and synthesis time. Experimental result showed that the proposed method improved the qualify of synthesized speech. as well as shortened the synthesis time.
The purpose of this paper Is to propose a dubbed signal time-synchroniztion technique based on the SOLA(Synchronized Over-Lap and Add) method which has been widely used to modify the time scale of speech signal. In broadcasting audio recording environments, the high degree of background noise requires dubbing process. Since the time difference between the original and the dubbed signal ranges about 200mili seconds, process is required to make the dubbed signal synchronize to the corresponding image. The proposed method finds he starting point of the dubbing signal using the short-time energy of the two signals. Thereafter, LPC cepstrum analysis and DTW(Dynamic Time Warping) process are applied to synchronize phoneme positions of the two signals. After determining the matched point by the minimum mean square error between orignal and dubbed LPC cepstrums, the SOLA method is applied to the dubbed signal, to maintain the consistency of the corresponding phase. Effectiveness of proposed method is verified by comparing the waveforms and the spectrograms of the original and the time synchronized dubbing signal.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.337-340
/
2004
The exactly reproduced prosody of a TTS system is one of the key factors that affect the naturalness of synthesized speech. In general, rules about prosody had been gathered either from linguistic knowledge or by analyzing the prosodic information from natural speech. But these could not be perfect and some of them could be incorrect. So we proposed artificial neural network(ANN)s that can be trained to team the prosody of natural speech and generate it. In learning phase, let ANNs learn the pitch and energy contour of center phoneme by applying a string of phonemes in a sentence to ANNs and comparing the output pattern with target pattern and making adjustment in weighting values to get the least mean square error between them. In test phase, the estimation rates were computed. We saw that ANNs could generate the prosody of a sentence.
The aim of this study is to conduct superordinate word selection task to compare their performance and reaction time, and superordinate word writing task to compare the differences in their performance and error pattern in 40 elderly adults and 43 young adults. As a result, first, in both tasks, elderly adults had a smaller number of correct responses. Second, elderly adults showed slower reaction time than young adults. Third, in superordinate word writing task, elderly adults showed more relevant errors than irrelevant errors. The reason elderly adults had a smaller number of correct responses in both tasks was that the links among the pieces of information in the semantic lexicon weakened or deteriorated due to normal aging. Slower reaction time was based on neurophysiological changes of the brain and cognitive processing speed. In addition, the relevant errors showed that they could access the lexicon for target words and produce explanation the relevant characteristics, even though they could not retrieve the target words.
In this Paper. a method for improving the performance of automatic speech recognition (ASR) system for conversational speech is proposed. which mainly focuses on increasing the robustness against the rapidly speaking utterances. The proposed method doesn't require an additional speech recognition task to represent speaking rate quantitatively. Energy distribution for special bands is employed to detect the vowel regions, the number of vowels Per unit second is then computed as speaking rate. To improve the Performance for fast speech. in the pervious methods. a sequence of the feature vectors is expanded by a given scaling factor, which is computed by a ratio between the standard phoneme duration and the measured one. However, in the method proposed herein. utterances are classified by their speaking rates. and the scaling factor is determined individually for each class. In this procedure, a maximum likelihood criterion is employed. By the results from the ASR experiments devised for the 10-digits mobile phone number. it is confirmed that the overall error rate was reduced by $17.8\%$ when the proposed method is employed
Advancing of mobile device is remarkable, so the research on mobile input device is getting more important issue. There are lots of input devices such as keypad, QWERTY keypad, touch and speech recognizer, but they are not as convenient as typical keyboard-based desktop input devices so input strings usually contain many typing errors. These input errors are not trouble with communication among person, but it has very critical problem with searching in database, such as dictionary and address book, we can not obtain correct results. Especially, Hangeul has more than 10,000 different characters because one Hangeul character is made by combination of consonants and vowels, frequency of error is higher than English. Generally, suffix tree is the most widely used data structure to deal with errors of query, but it is not enough for variety errors. In this paper, we propose fast approximate Korean word searching system, which allows variety typing errors. This system includes several algorithms for applying general approximate string searching to Hangeul. And we present profanity filters by using proposed system. This system filters over than 90% of coined profanities.
In this paper, we propose a new acoustic model for characterizing segmental features and an algorithm based upon a general framework of hidden Markov models (HMMs) in order to compensate the weakness of HMM assumptions. The segmental features are represented as a trajectory of observed vector sequences by a polynomial regression function because the single frame feature cannot represent the temporal dynamics of speech signals effectively. To apply the segmental features to pattern classification, we adopted segmental HMM(SHMM) which is known as the effective method to represent the trend of speech signals. SHMM separates observation probability of the given state into extra- and intra-segmental variations that show the long-term and short-term variabilities, respectively. To consider the segmental characteristics in acoustic model, we present segmental-feature HMM(SFHMM) by modifying the SHMM. The SFHMM therefore represents the external- and internal-variation as the observation probability of the trajectory in a given state and trajectory estimation error for the given segment, respectively. We conducted several experiments on the TIMIT database to establish the effectiveness of the proposed method and the characteristics of the segmental features. From the experimental results, we conclude that the proposed method is valuable, if its number of parameters is greater than that of conventional HMM, in the flexible and informative feature representation and the performance improvement.
Journal of the Korea Society of Computer and Information
/
v.16
no.12
/
pp.83-92
/
2011
Typographical errors by the author's mistyping occur frequently in a document being prepared with word processors contrary to usual publications. Preparing this online document, the most common orthographical errors are spelling errors resulting from incorrectly typing intent keys to near keys on keyboard. Typical spelling checkers detect and correct these errors by using morphological analyzer. In other words, the morphological analysis module of a speller tries to check well-formedness of input words, and then all words rejected by the analyzer are regarded as misspelled words. However, if morphological analyzer accepts even mistyped words, it treats them as correctly spelled words. In this paper, I propose a simple method capable of detecting and correcting errors that the previous methods can not detect. Proposed method is based on the characteristics that typographical errors are generally not repeated and so tend to have very low frequency. If words generated by operations of deletion, exchange, and transposition for each phoneme of a low frequency word are in the list of high frequency words, some of them are considered as correctly spelled words. Some heuristic rules are also presented to reduce the number of candidates. Proposed method is able to detect not syntactic errors but some semantic errors, and useful to scoring candidates.
This study aimed to establish evaluation methods for the speech processing stages of phonological encoding, phonological short-term memory, and articulation transcoding from a psycholinguistic perspective. A meta-analysis of 21 studies published between 2000 and 2024, involving 1,442 participants, was conducted. Participants were divided into six groups: general, dyslexia, speech sound disorder, language delay, apraxia+aphasia, and childhood apraxia of speech. The analysis revealed effect sizes of g=.46 for phonological encoding errors, g=.57 for phonological short-term memory errors, and g=.63 for articulation transition errors. These results suggest that substitution errors, order and repetition errors, and phoneme addition and voicing substitution errors are key indicators for assessing these abilities. This study contributes to a comprehensive understanding of speech and language disorders by providing a methodological framework for evaluating speech processing stages and a detailed analysis of error characteristics. Future research should involve non-word repetition tasks across various speech and language disorder groups to further validate these methods, offering valuable data for the assessment and treatment of these disorders.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.