• Title/Summary/Keyword: Phone antenna

Search Result 120, Processing Time 0.021 seconds

Isolation Enhancement by the Non-connected Ground Structure for the Mobile Phone MIMO Antenna (비접촉 접지구조에 의한 휴대폰 MIMO 안테나 격리도 향상)

  • Jo, Young-Sang;Son, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1032-1037
    • /
    • 2016
  • In this paper, the method of isolation enhancement for the mobile phone MIMO antenna of LTE class 40(2300~2400MHz) was studied. Design of MIMO antenna was based on the hybrid antenna that operates both a monopole and an IFA(Inverted F Antenna). A structure for the isolation enhancement which controls induced electric field on the ground plane is located between MIMO antenna, and was not connected with the ground but apart 0.3mm. A MIMO antenna that operates on class 3~40(1710~2400MHz) of LTE service bands and a structure for the isolation enhancement at the class 10 band were designed. VSWR measurement of implemented antenna on the FR4 board showed within 3:1 at entire design bands, and isolation between antennas at the class 40 band was less than -30dB. Isolation was enhanced more than 20dB by the studied structure. ECC(Envelope Correlation Coefficient) for MIMO performance was under 0.1, and antenna average gain and efficiency measured in the anechoic chamber were -4.28~-1.40dBi and 37.32~72.36% respectively.

Analysis of the monopole antenna characteristcs of handy phone using Finite Difference Time Domain(FDTD) Method (시간영역 유한차분법을 이용한 휴대용 전화기의 모노폴 안테나 특성해석)

  • 손영수;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.3-14
    • /
    • 1995
  • The broadband input impedance, the input power and the radiation pattern of the monopole antenna attached to the handy phone operated at 800MHz are calculated by using the Finite Difference Time Domain(FDTD) Method. For the FDTD analysis of frequency characteristics of monopole antenna, the handy phone is modeled with the geometry that the monopole antenna is connected to a conducting box, and the modified FDTD algorithm[11] used the thin wire appproximation method and the Maxwell's integral equation from the original Yee algorithm is applied for the analysis of the wire structure. Also, by means of finding the current distribution directly from circumferencial magnetic filelds around the monopole antenna and the conducting box, the radiation pattern is calculated to observe the influence of the conducting box, and is compared with the results of the known mothod for the FDTD calculation of radiation pattern, For the experiments, the handy phone of which full length including antenna is .lambda. $\lambda$/2 is manufactured and we confirm that all computation results are agree well with the mea- sured values.

  • PDF

3 Dimensional Mobile Phone Internal Antenna Using the Helix Element (헤릭스를 이용한 3차원 구조의 휴대폰 내장형 안테나)

  • Hong, Min-Gi;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.906-912
    • /
    • 2008
  • We designed and implemented a 3-dimensional structure internal antenna which has volume less than 1.5 cc for mobile phone to improve efficiency and gain. Multiple bending for the resonance of small internal antenna derives reduction of gain due to cancellation of antenna current. In this study, the current cancelation was reduced by the minimization of antenna bending. And the helix element was applied for the purpose both compensation of short antenna length and action of radiation element. For the verification of this study, a 1.5 cc volume 3D antenna which was fabricated by the press method applied to the dual band mobile phone. Measurement showed that efficiencies and gains under the slide down and up were 27.73 %, 0.29 dBi for the GSM band and 46.84 %, 2.27 dBi for the USPCS band, and had good performance under the small antenna volume. H-plane radiation pattern showed omnidirectional for the both band.

The Design and fabrication of Multilayer Helical Antenna for PCS Cellular Phone (PCS 단말기용 적층형 헬리컬 안테나 설계 및 제작)

  • Park, I.S.;Seo, H.S.;Kim, J.K.;Yun, J.S.;Hur, J.
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.203-206
    • /
    • 1999
  • This paper describe the design and fabrication of a Multilayer helical antenna for PCS cellular phone. It has been designed for commercial PCS cellular phone by HP-HFSS and fabricated with diameter of 7.6mm and height of 9mm. As a result, the antenna was well-operated in the frequency ranges of 1.75~1.87㎓ for the application of PCS system. We obtained omni-directional radiation pattern, gain of -0.9㏈i and bandwidth of 180MHz.

  • PDF

A Study on the Directivity of Portable Telephone Antenna (휴대 전화용 안테나의 지향성에 관한 연구)

  • 선승호;박수봉;김재이;고영혁
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1151-1156
    • /
    • 2001
  • In this paper, the electric field distribution and directivity on human head caused by portable phone is analyzed. An analysis model is composed of a human head model and the antenna mounted on the same ground plane as portable telephone size. The QMSA to load a capacitor without limitation of the electric force is used In the computational model to apply to the antenna mounted on portable phone. This antenna is designed to operate in the near of frequency 2.0㎓, is observed the radiation characteristics of the antenna and their variations as a function of distance from the human head.

  • PDF

SAR Reduction of Cellular Phone Terminals with the Ferrite Bead inside of the Helical Coil (휴대폰 헬리컬 안테나 내부의 페라이트 비드에 의한 SAR감쇠 효과)

  • 김윤명;이승배;박명석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.315-318
    • /
    • 2001
  • We are proposing a new mobile phone antenna, which has a specially manufactured Mn-Zn cylindrical ferrite bead inside of the helical coil of the antenna. The extended antenna radiation patters and the spatial peak SAR averaged over 1 gram simulated tissue with and without the ferrite bead insertion were measured at 824 MHz. The results show that the ferrite bead resulted in SAR reduction about 20 %, and reflection coefficient increase about 7 % for the extended antenna. The applicability of this scheme to the antenna mass production is quite feasible.

  • PDF

Design and Fabrication of Dual-band Compact Monopole Antenna with Two Branches for Wi-Fi Mobile Applications (두개의 브랜치 라인을 갖는 와이파이 이동통신용 이중 대역 모노폴 안테나의 설계와 제작)

  • Jeong, Gye-Taek;Ju, Young-Rim;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • This letter describes a dual-band compact monopole antenna with two branches for Wi-Fi applications. The proposed antenna is based on a planar monopole design, and composed of two branches of radiating patches for dual-band operation. The ground size of the antenna matches the ground size of a typical hand-held cellular phone for improved compatibility with mobile phone printed circuit boards. The antenna is designed using a simulator and fabricated with optimized parameters. The fabricated antenna is measured at the lower and higher operating frequencies, and the return loss coefficient, gain, and radiation patterns are determined.

Fabrication of Folded Monopole Antenna for Quintuple Band Mobile Phone Handset (5밴드 휴대폰용 폴디드 모노폴 안테나 제작)

  • Jang In-Seok;Son Tae-Ho;Lee Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.713-718
    • /
    • 2006
  • We designed and fabricated, in this paper, a quintuple band folded monopole antenna for the mobile phone handset that can be provided multiple mobile services. Antenna design was based on the compensation of series antenna capacitance with the expansion of physical antenna length by the proper folding structure. It's shown that this antenna satisfies quintuple service band as CDMA/GSM/DCS/USPCS/WCDMA, and is more cost competitive than conventional metal plate pressing method by applying on flexible PCB technology. Measured maximum gain on quintuple band were $-2.51{\sim}+1.82 dBi$, and radiation patterns were also shown nearly omnidirectional on all bands.

Design of Two-Inductor Loaded Small Loop Antennas Using Genetic Algorithm (유전 알고리즘을 이용한 인덕터 장하 소형 루프 안테나 설계)

  • Cho, Gyu-Yeong;Kim, Jae-Hee;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1021-1030
    • /
    • 2009
  • We propose optimization method of two-inductor loaded small loop antennas using simple genetic algorithm. To optimize the loop antennas for the RFID and the mobile phone band, we changed positions and values of the two inductors in the loop antenna. Visual basic was used to make genetic algorithm and to calculate fitness values by controlling the commercial EM software. The bandwidth of the optimized RFID loop antenna is 10 MHz at the center frequency of 922 MHz and that of the mobile phone antenna are 84 MHz and 266 MHz at the center frequency of 948 MHz(GSM band) and 1.81 GHz(DCS band), respectively.

Improvement of Radiation Performance of Mobile Phone Antenna Using PIFA on U-Shaped Ground Plane (U-형 접지면 상에 배치된 평판형 역 F 안테나 구조를 이용한 휴대폰 단말기의 무선 성능 개선)

  • Lee, Jeong-Ho;Song, Jae-Kwan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.90-97
    • /
    • 2010
  • In this paper, we propose antenna topology and ground plane shape to improve the performance of PIFA (Planar Inverted F Antenna) which is built-in mobile phone. First, we designed the PIFA antenna consists of multiple radiators to provide multi-current paths. Then we designed U-shaped ground plane on the PCB under the antenna. The proposed antenna structure shows TRP/TIS improvement of 2.0 dB/3.7 dB for GSM and 2.2 dB/ 2.0 dB for DCS and 0.8 dB/1.5 dB for PCS and 1.3 dB/0.7 dB for WCDMA at the free space.