• Title/Summary/Keyword: Phase locked loop(PLL)

Search Result 415, Processing Time 0.031 seconds

A Four State Rotational Frequency Detector for Fast Frequency Acquisition

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • This paper proposes a new rotational frequency detector (RFD) for phase-locked loop (PLL) or clock and data recovery (CDR) applications for fast frequency acquisition. The proposed RFD uses the four states finite state machine (FSM) model to accelerate the frequency acquisition time. It is modeled and simulated with MATLAB Simulink. The functionalities of the proposed RFD are examined and the results are compared to those of a conventional RFD. The proposed RFD's frequency acquisition time is four times faster than that of a conventional one. The proposed RFD incorporated with a phase detector (PD) in PLL or CDR is expected to improve the frequency and phase acquisition performance later greatly.

A Novel Phase Locked Loop for Grid-Connected Converters under Non-Ideal Grid Conditions

  • Yang, Long-Yue;Wang, Chong-Lin;Liu, Jian-Hua;Jia, Chen-Xi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • Grid synchronization is one of the key techniques for the grid-connected power converters used in distributed power generation systems. In order to achieve fast and accurate grid synchronization, a new phase locked loop (PLL) is proposed on the basis of the complex filter matrixes (CFM) orthogonal signal generator (OSG) crossing-decoupling method. By combining first-order complex filters with relation matrixes of positive and negative sequence voltage components, the OSG is designed to extract specific frequency orthogonal signals. Then, the OSG mathematical model is built in the frequency-domain and time-domain to analyze the spectral characteristics. Moreover, a crossing-decoupling method is suggested to decouple the fundamental voltage. From the eigenvalue analysis point of view, the stability and dynamic performance of the new PLL method is evaluated. Meanwhile, the digital implementation method is also provided. Finally, the effectiveness of the proposed method is verified by experiments under unbalanced and distorted grid voltage conditions.

An Analytical Approximation for the Pull-Out Frequency of a PLL Employing a Sinusoidal Phase Detector

  • Huque, Abu-Sayeed;Stensby, John
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.218-225
    • /
    • 2013
  • The pull-out frequency of a second-order phase lock loop (PLL) is an important parameter that quantifies the loop's ability to stay frequency locked under abrupt changes in the reference input frequency. In most cases, this must be determined numerically or approximated using asymptotic techniques, both of which require special knowledge, skills, and tools. An approximating formula is derived analytically for computing the pull-out frequency for a second-order Type II PLL that employs a sinusoidal characteristic phase detector. The pull-out frequency of such PLLs can be easily approximated to satisfactory accuracy with this formula using a modern scientific calculator.

A Modular UPS Design with an Active Multiple Interphase Reactor and Double PLL Control (능동 다중인터페이스 리액터와 Double PLL제어를 이용한 Modular UPS 설계)

  • 박인덕;정상식;안형회;김시경
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.489-497
    • /
    • 2001
  • The proposed dobule phase locked loop and active multiple interphase reactor are used to eliminate the circular current and the voltage ripples caused by the system parameter unbalance of parallel connected UPSs. In this paper, digital controller for the dobule PLL and active interphase reactor is implemented with ADSP21061 as an aspect of functional convenience.

  • PDF

Adaptive Phase-Locked Loop for Process Control System

  • Park, Jin-Bae;Shohei, Niwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.108.2-108
    • /
    • 2001
  • This paper presents the application of adaptive phase-locked loop (adaptive PLL) technique to control the process variable of the process control system. The adaptive algorithm is related to the error. When the error of the system is changed, the adaptive gain will be directly changed according to the error. If the value of the adaptive gain is large, the value of the error will be large. In this experiment, the reference input is 50% step input. The experimental result in controlling the first order lag process by the adaptive PLL shows that the response of the controlled system has no overshoot, short rise time, and zero steady-state error. The experimental result also shows that when the output disturbance enters to the process control system, the adaptive PLL can maintain the stability of the system and the effect of the output disturbance can also be fast rejected. The adaptive PLL has better performance ...

  • PDF

Behavioral design aad verification of electronic circuits using CPPSIM (CPPSIM을 이용한 동작 레벨에서의 회로 설계 및 검증)

  • Han, Jin-Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.893-899
    • /
    • 2008
  • Behavioral level simulations of LDO voltage regulator and phase locked loop(PLL) are performed with CPPSIM, a behavioral-level simulation tool based on C language. The validity of the simulation tool is examined by modeling analog circuits and simulating the circuits. In addition, the designed PLL adopted digital architecture to possess advantages of digital circuits.

Performance Analysis of the GPS Receiver according to the Bandwidths of a PLL Loop Filter in a Launch Vehicle Simulation (발사체 시나리오에서 PLL 루프필터의 대역폭에 따른 GPS 수신기의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Bung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2013
  • This paper describes the analysis of the tracking and navigation performance of a GPS receiver in a launch vehicle simulation when the carrier tracking loop is designed as a 3rd order phase-locked loop with variable bandwidths. There are differences of tracking and navigation performance according to the variable bandwidths under the dynamics condition. When the bandwidth is set to narrow, the GPS receiver could not track the satellite signals so that the navigation information could not be calculated.

A New Orthogonal Signal Generator with DC Offset Rejection for Single-Phase Phase Locked Loops

  • Huang, Xiaojiang;Dong, Lei;Xiao, Furong;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.310-318
    • /
    • 2016
  • This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop (PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and experimental results demonstrate the feasibility of the proposed AF-SPLL.

An Extremely Small Size Multi-Loop Phase Locked Loop (복수개의 부궤환 루프를 가진 초소형 크기의 위상고정루프)

  • Choi, Young-Shig;Han, Geun-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • An extremely small size multi-loop phase-locked loop(PLL) keeping phase noise performances has been proposed. It has been designed to have the loop filter made of small single capacitor with multiple Frequency Voltage Converters (FVCs) because the main goal is to make the size of the proposed PLL extremely small. Multiple FVCs which are connected to voltage controlled oscillator(VCO) make multiple negative feedback loops in PLL. Those multiple negative feedback loops enable the PLL with the loop filter made of an extremely small size single capacitor operate stably. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the 1.6ps jitter and $10{\mu}s$ locking time.

Design and Fabrication of a Offset-PLL with DAC (DAC를 이용한 Offset-PLL 설계 및 제작)

  • Lim, Ju-Hyun;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.258-264
    • /
    • 2011
  • In this paper, we designed a frequency synthesizer with a low phase noise and fast lock time and excellent spurious characteristics using the offset-PLL(Phase Locked Loop) that is used in GSM(Global System for Mobile communications). The proposed frequency synthesizer has low phase noise using three times down conversion and third offset frequency of this synthesizer is created by DDS(Direct Digital Synthesizer) to have high frequency resolution. Also, this synthesizer has fast switching speed using DAC(Digital to Analog Converter). but phase noise degraded due to DAC. we improved performance using the DAC noise filter.