• Title/Summary/Keyword: Phase change characteristics

Search Result 907, Processing Time 0.027 seconds

The Optical Characteristics og Te$_{85}Ge_{15}$ Alloy According to Phase Transition (Te$_{85}Ge_{15}$ alloy의 상변화에 따른 광학적 연구)

  • 김병훈;모연한;이영종;정홍배;김종빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.111-113
    • /
    • 1989
  • This paper reports the optical characteristics of TeS$_{5}$ Ge$_{5}$ thin film. In phase diagram, TeS$_{5}$ Ge$_{5}$ has the eutetic point with the loweat melting point. Therfore, TeS$_{5}$ Ge$_{5}$ thin film will be melted by Diode Laser with low energy. TeS$_{5}$ Ge$_{5}$ thin films start to change the phase from amorphous to crystalline near 10$0^{\circ}C$, but perfectly change the phase at 28$0^{\circ}C$. As-deposit TeS$_{5}$ Ge$_{5}$ thin film start to change the phase to crystalline in enviroment og 66$^{\circ}C$ 80%RH.circ}C$ 80%RH.

  • PDF

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • Nam, Gi-Hyeon;Yun, Yeong-Jun;Maeng, Gwang-Seok;Kim, Gyeong-Mi;Kim, Jeong-Eun;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF

Phase Change Characteristics of SnXSe100-X Thin Films by RF-magnetron Sputtering

  • Kim, Sang-Kyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.203-206
    • /
    • 2009
  • $Sn_XSe_{100-X}$ (15|X|30) alloys have been studied to explore their suitability as phase change materials for nonvolatile memory applications. The phase change characteristics of thin films prepared by a Radio Frequency (RF) magnetron co-sputtering system were analyzed by an X-ray diffractometer and 4-point probe measurement. A phase change static tester was also used to determine their crystallization under the pulsed laser irradiation. X-ray diffraction measurements show that the transition in sheet resistance is accompanied by crystallization. The amorphous state showed sheet resistances five orders of magnitude higher than that of the crystalline state in $Sn_XSe_{100-X}$ (x = 15, 20, 25, 30) films. In the optimum composition, the minimum time of $Sn_XSe_{100-X}$ alloys for crystallization was 160, 140, 150, and 30ns at 15mW, respectively. The crystallization temperature and the minimum time for crystallization of thin films were increased by increasing the amount of Sn, which is correlated with the activation energy for crystallization.

Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer (개량된 등가비열법을 이용한 상변화 열전달의 수치해석)

  • Mok Jinho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.

The characteristics of microencapsulated phase-change materials (상전이 마이크로캡슐 재료의 축열특성)

  • 임대우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.53-56
    • /
    • 2003
  • The objective of this research is to investigate the thermal behavior of microencapsulated phase-change materials(MEPCM), and a shell of melamine-formaldehyde. These PCM materials were tested using DSC and thermal data station. Fabrics with enhanced thermal properties were prepared by padding the fabrics with the microcapsules containing PCM and acryl binder. The rate of temperature increase was significantly decreased as the amount of MEPCM added on the surface of the fabrics increased.

  • PDF

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

An Analysis of Noise Characteristics According to the Excitation Method of SRM (SRM의 여자방식에 따른 소음특성 해석)

  • Mun, Jae-Won;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.565-571
    • /
    • 2000
  • SRM has been applied to many commercial applications that require economical advantages and high performance abilities. But it has some drawbacks such as acoustic noise due to the abrupt change of mmf level when commutation. The abrupt change of a phase excitation produces mechanical stresses and it results in torque ripple and noise. This paper deals with an analysis of vibration and noise in SRM drive. Several types of excitation method are taken into account. The 1-phase and 2-phase excitation technique of short-pitch winding 2-phase excitation technique of full-pitch winding are tested. The acoustic noise is reduced remarkably through the sequential phase excitation in the 2-phase excitation. It is because that the scheme reduces abrupt change of excitation level by distributed balanced excitation with free-wheeling during commutation.

  • PDF

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

TMA-Water Clathrate Compound of Cooling Characteristics for Low Temperature Latent Heat Storage (저온잠열축열을 위한 TMA-물계 포접화합물의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyoun-Ho;Chung, Nak-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.296-301
    • /
    • 2009
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity is increased and COP is decreased due to supercooling of water in the course of phase change from solid to liquid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of $20{\sim}25wt%$ as a low temperature latent heat storage material. The results showed that the phase change temperature and the specific heat is increased and the supercooling degree is decreased as the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$, the supercooling degree of $8.0^{\circ}C$ and the specific heat of 3.499 kJ/kgK in the cooling process. This can lead to reduction of operation time of refrigerator in low temperature latent heat storage system and efficiency improvement of refrigerator COP and overall system. Therefore, energy saving and improvement of utilization efficiency are expected.

  • PDF

A Study on the Heat Release Characteristics of Gel Type Micro Size Latent Heat Storage Material Slurry with Direct Contact Heat Exchange Method (겔 상태의 미세 잠열 축열재 혼합수의 기액직접접촉식 열교환법에 의한 방열 특성)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.618-623
    • /
    • 2004
  • This paper has dealt with the heat storage characteristics of gel type micro size latent heat storage material slurry. The heat release operation to the gel type micro size latent heat storage material slurry was carried out using hot air bubbles by direct contact heat exchange. This experiment was carried out using phase change material of n-paraffin so the heat release amount is higher than cold water system. The parameters of this experiment were concentration of latent heat phase change material, height of heat release bath and inlet velocity of hot air. The main results obtained are as follows : (1) The effect of concentration of latent heat phase change material dispersed with water is very affective to the direct contact heat exchange between hot air and gel type micro size latent heat storage material slurry. (2) It is clarified that the most effective concentration of latent heat phase change material dispersed with water exists around 20mass% at this type of direct heat exchange model experiment.