• Title/Summary/Keyword: Phase and amplitude

Search Result 1,338, Processing Time 0.023 seconds

Simple Amplitude and Phase Predistortion for PAPR Reduction in OFDM Systems

  • Park, Jeong-Sang;Lee, Jae-Kwon;Kim, Jin-Up
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.231-233
    • /
    • 2007
  • One of the drawbacks in an OFDM system is the high peak-to-average power ratio (PAPR). Among a number of techniques to reduce the high PAPR, simple amplitude predistortion (SAP), a form of active constellation extension, has been proposed to effectively achieve the desired PAPR. In this letter, a novel scheme, simple amplitude and phase predistortion (SAPP), is proposed. In SAP the carriers' amplitude is utilized to combat the peak signal. Each amplitude is amplified according to its degree of contribution as a metric. In addition to amplitude, SAPP also utilizes the phase. Simulation results indicate that the proposed scheme provides better PAPR reduction than SAP.

  • PDF

Functional hierarchical clustering using shape distance

  • Kyungmin Ahn
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.601-612
    • /
    • 2024
  • A functional clustering analysis is a crucial machine learning technique in functional data analysis. Many functional clustering methods have been developed to enhance clustering performance. Moreover, due to the phase variability between functions, elastic functional clustering methods, such as applying the Fisher-Rao metric, which can manage phase variation during clustering, have been developed to improve model performance. However, aligning functions without considering the phase variation can distort functional information because phase variation can be a natural characteristic of functions. Hence, we propose a state-of-the-art functional hierarchical clustering that can manage phase and amplitude variations of functional data. This approach is based on the phase and amplitude separation method using the norm-preserving time warping of functions. Due to its invariance property, this representation provides robust variability for phase and amplitude components of functions and improves clustering performance compared to conventional functional hierarchical clustering models. We demonstrate this framework using simulated and real data.

Amplitude Filter와 Phase Filter가 결합된 광학계의 결상특성

  • 박성종;이종진;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 1993
  • We chose Bessel beamu[$J_o(ar)}$)l in order to investigate image forming property of the optical system with combined filter of amplitude and phase(CFAP). This paper investigated numerically the influence of number of nodes of these beams on the PSF, encircled energy(E), transmission ratio(TR), gain((;) for an aberrated(1aberration-free) optical system. These results showed that the property of PSF differ considerably from the one of the existing amplitude filter and that Bessel beam has super compensating effect for an optical system with spherical aberration. Particularly, the Bessel beam has less the size of central spot than the radius of Airy disk, this result can therefore be applied to the fabrication of semiconductor device.

  • PDF

Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

  • Lee, Chang-Hoon;Je, Do-Heung;Kim, Kwang-Dong;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.

Random Amplitude Variability of Seismic Ground Motions and Implications for the Physical Modeling of Spatial Coherency

  • Zerva, A.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.139-150
    • /
    • 2001
  • An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.

  • PDF

Design of Ring Hybrid Balun with Good Amplitude and Phase balance (진폭과 위상 특성이 우수한 링 하이브리드 발룬 설계)

  • Na Won;Cho Il-Hyun;Lee Moon-Que
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-178
    • /
    • 2006
  • We present a ring hybrid balun with additional two ${\lambda}/4$ short stubs that offers excellent amplitude and phase balance performance. The phase difference which is essentially occurred in $180^{\circ}$ ring hybrid is compensated by a ${\lambda}/4$ short stub in one output port. To compensate the amplitude imbalance inherent in the ring hybrid, the series resistance will be added to the second stub which is connected to another output port. The measured balun shows that phase imbalance is less than $2.5^{\circ}$ and magnitude imbalance is less than 0.2dB over a 1.75-2.25 GHz.

  • PDF

Distributions of Amplitude and Phase Around C-points: Lemon, Mon-Star, and Star

  • Yu, Renlong;Ye, Dong;Xin, Yu;Chen, Yanru;Zhao, Qi
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.192-198
    • /
    • 2016
  • The distributions of (or constraints for) amplitude and phase around C-points, including Lemon, Mon-Star and Star, are studied. A Cartesian coordinate system with origin at the C-point is established. Four curves, where the azimuthal angles of polarization ellipses are 0°, 45°, 90°, and 135° respectively, are used to determine the distributions. Discussions of these constraints illustrate why Mon-Star is rarer than Lemon or Star in experiments. The transformation relationships between these three polarization singularities (PSs) are also discussed. We construct suitable functions for amplitude and phase according to their constraints, and simulate several PSs of particular shapes. With the development of modulation techniques for amplitude and phase, it is clear that this work is helpful for generating arbitrarily shaped C-points in experiments.

Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method (진폭-위상 복합비교 기법과 상관형 위상비교 기법의 방향탐지 정확도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.195-201
    • /
    • 2016
  • In this paper, we present the direction finding accuracy of correlative interferometer method and amplitude-phase comparison method. Spiral antennas are used for amplitude-phase comparison method and blade antennas are used for correlative interferometer method. Those are made for uniform circular array (UCA) direction finding antenna systems. We simulate the accuracy of azimuth angle with 3 antennas UCA when SNR is 20 dB and baseline is 0.5 wave length. Correlative interferometer method has better accuracy than amplitude-phase comparison method.

Maximum Likelihood Receivers for DAPSK Signaling

  • Xiao Lei;Dong Xiaodai;Tjhung Tjeng T.
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2006
  • This paper considers the maximum likelihood (ML) detection of 16-ary differential amplitude and phase shift keying (DAPSK) in Rayleigh fading channels. Based on the conditional likelihood function, two new receiver structures, namely ML symbol-by-symbol receiver and ML sequence receiver, are proposed. For the symbol-by-symbol detection, the conventional DAPSK detector is shown to be sub-optimum due to the complete separation in the phase and amplitude detection, but it results in very close performance to the ML detector provided that its circular amplitude decision thresholds are optimized. For the sequence detection, a simple Viterbi algorithm with only two states are adopted to provide an SNR gain around 1 dB on the amplitude bit detection compared with the conventional detector.

Effect of the Phase Factor of the Reflection Amplitude on the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.43-46
    • /
    • 2001
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF