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Abstract
A functional clustering analysis is a crucial machine learning technique in functional data analysis. Many

functional clustering methods have been developed to enhance clustering performance. Moreover, due to the
phase variability between functions, elastic functional clustering methods, such as applying the Fisher-Rao met-
ric, which can manage phase variation during clustering, have been developed to improve model performance.
However, aligning functions without considering the phase variation can distort functional information because
phase variation can be a natural characteristic of functions. Hence, we propose a state-of-the-art functional hi-
erarchical clustering that can manage phase and amplitude variations of functional data. This approach is based
on the phase and amplitude separation method using the norm-preserving time warping of functions. Due to its
invariance property, this representation provides robust variability for phase and amplitude components of func-
tions and improves clustering performance compared to conventional functional hierarchical clustering models.
We demonstrate this framework using simulated and real data.

Keywords: amplitude variation, functional data analysis, functional hierarchical clustering, phase
variation, shape distance, SRVF

1. Introduction

Functional clustering analysis is a crucial machine learning technique that assigns functional obser-
vations to several groups in functional data analysis (FDA) (Ramsay and Silverman, 2005). The
literature has proposed many methods of functional clustering (Bouveyron and Jacques, 2011; Bou-
veyron et al., 2015; Febrero-Bande and Oviedo de la Fuente, 2012; Marron et al., 2014). A function
comprises two components: The phase (horizontal or x-axis) component and amplitude (vertical or
y-axis) component. Therefore, verifying whether phase or amplitude variations derive from the natu-
ral characteristics of functional objectives or are unknown noise is critical for FDA. If variations are
noise, then the noise must be removed using statistical methods. For example, amplitude variations
can be minimized using a smoothing technique employing a basis representation, such as the B-spline
basis function in a parametric way or the kernel function in a nonparametric way. For phase varia-
tion, noise can be removed using a functional statistical method, called a registration or alignment
method. Many registration methods have been proposed, and currently, the Fisher-Rao registration by
Srivastava et al. (2011) is one of the best alignment methods.

Therefore, many researchers are interested in combining registration and statistical methods to
improve the performance of the statistical results. Some papers have been developing joint methods
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to address phase variation between curves while implementing a statistical method. For example, Ahn
et al. (2018, 2020) proposed an elastic functional predictor model by reducing phase variation while
estimating regression coefficients. Xu et al. (2022) proposed a Fisher-Rao registration algorithm
to manage phase variation effectively for neural spike data. However, for the statistical analysis,
these methods focus on minimizing or removing phase variation assumed to be noise. This strong
assumption can be beneficial if the phase variation is indeed noise; if not, this strong conjecture could
lead to incorrect statistical results by distorting the natural characteristics of functional data.

To solve this problem, we propose a state-of-the-art method, a functional hierarchical agglom-
erative clustering method using shape distances (FHACS), which can address phase and amplitude
variations for functional hierarchical clustering analysis. This approach is motivated by the phase-
amplitude separation algorithm (Srivastava et al., 2011), where invariant metrics, such as the Fisher-
Rao metric and the elastic Riemannian metric for functional data in FDA, are employed. One of
the substantial advantages of this separation method is that it avoids the pinching effect, where the
function can be pinched while aligning in the L2 space.

The remainder of this paper is organized as follows. Section 2 describes the FHACS under the
Fisher-Rao invariant metric and summarizes the concepts used for the clustering method. We demon-
strate this method using several simulated datasets and compare its performance against three alterna-
tive methods: 1) the standard functional hierarchical clustering model, 2) the pre-aligned functional
hierarchical clustering method, and 3) the elastic functional hierarchical clustering model that func-
tions are aligned while computing the distance between two functions in Section 3. Then, we apply
the proposed and three candidate methods to six real datasets to compare the effectiveness and clus-
tering performance in Section 4. Last, Section 5 presents the concluding remarks and limitations of
this study.

2. Methods

To introduce FHACS, we first summarized the standard functional hierarchical clustering model and
some critical concepts for developing the functional clustering model.

2.1. Standard functional hierarchical clustering

The functional hierarchical clustering analysis is the most basic, simple clustering algorithm, which
determines the distances between a pair of functional objectives and verifies which cluster should be
combined or divided depending on the strategies. We use an agglomerative strategy for the bottom-up
approach and a divisive strategy for the top-down approach. There are two critical points to consider
when implementing this hierarchical clustering analysis: distance and linkage. Distance is nearly
fixed for the FDA. We defined observations as functions in the L2 space, where the inner product of
two functions is defined as 〈 f , g〉 =

∫
f g dt in the Hilbert space,H . Thus, we used the L2 distance to

compute the distance between the functions on the time interval, T , expressed as follows:

d( f1, f2) =

√∫
T

( f1(t) − f2(t))2 dt, (2.1)

where f1 and f2 are the functional observations in the L2 space.
For the linkage method, we employed several selection methods for the hierarchical clustering

analysis. There are many possible linkages, and some examples are listed below.
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• Single linkage: The distance between two clusters is the minimum distance between members of
the two clusters.

• Centroid linkage: The distance between two clusters is the distance between their centroids.

• Complete linkage: The distance between two clusters is the maximum distance between members
of the two clusters.

• Average linkage: The distance between two clusters is the average of all distances between mem-
bers of the two clusters.

Each linkage method has advantages and disadvantages; thus, no best universal linkage exists for
all situations. For example, the single linkage method can manage nonelliptical shapes and is best
for capturing clusters of assorted sizes, but it has a problem with chaining. The complete, centroid,
and average linkage methods could group clusters when noise exists between clusters, but crowding,
dendrogram inversion, and sensitivity to a monotone transformation can occur, respectively.

2.2. Shape distance

Srivastava et al. (2011) proposed a method to decompose functions into phase and amplitude compo-
nents, which involves the functional registration algorithm in which phase variations can be removed
by aligning functions to any function template. The template function can be a random sample func-
tion (generally, the pairwise case) in the dataset or the Karcher or Fréchet mean of the functions
(generally, the groupwise case). After registration, the functions are split into phase and amplitude
components.

To implement this method, we defined functional observation f as a real-valued function on the
interval [0, 1] and let F denote the set of all such functions. Then, we defined the time-warping
function, γ, used for computing the phase distance. We let Γ is the set of all boundary-preserving
map between manifolds which is differentiable and has a differentiable inverse of the unit interval
[0, 1] (i.e., Γ = {γ : [0, 1] → [0, 1] | γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}). For alignment
or registration, Srivastava et al. (2011) established a mathematical expression representing a function
using its square root velocity function (SRVF), where q denotes the SRVF of the original function,
q : [0, 1]→ R, expressed as follows:

q(t) = sign
(

ḟ (t)
) √∣∣∣ ḟ (t)

∣∣∣ , (2.2)

where ḟ denotes the first derivative of the function f . The greatest advantage is that this framework
streamlines the complicated Fisher-Rao Riemannian metric and Fisher-Rao distance into the L2 inner
product and L2 norm, respectively. Then, a function f can be warped by a time-warping function,
γ: f 7−→ ( f ◦ γ). Hence, its SRVF changes by q 7−→ (q ◦ γ)

√
γ̇. This transformation is denoted by

(q∗γ) = (q◦γ)
√
γ̇ (Ahn et al., 2020), which implies the invariance property of the Fisher-Rao metric,

that for any q1, q2 ∈ L2 and γ ∈ Γ, we have ||(q1 ∗ γ)− (q2 ∗ γ)|| = ||q1 − q2||. Hence, the action of Γ on
L2 is by isometrics. A special case of this equation is ||(q ∗ γ)|| = ||q|| for all q and γ. Therefore, this
action preserves the L2 norm of the SRVF and avoids pinching effects in the registration process.

Two registration problems depend on the number of functional observations: The pairwise align-
ment problem for two observations and the groupwise or multiple alignment problem for multiple
observations (Srivastava and Klassen, 2016). Functional hierarchical clustering analysis requires only
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the distance between two functions, so only pairwise alignment is necessary. Hence, we summarize
the pairwise registration problem.

To align functions, the optimal time-warping function γ∗ is determined for any two given functions
f1, f2 ∈ F , such that the equation can be expressed as follows:

γ∗ = argmin
γ∈Γ

‖ f1 − f2 ◦ γ‖2 . (2.3)

Then, for any t ∈ [0, 1], the value f1(t) is registered to f2(γ∗(t)). In here, many potential problems
can be raised such as the invariance problem and pinching effect of using equation 2.3 in the L2 space.
Thus, we applied SRVF, q, rather than f to align the functions successfully to solve any potential
problems. Then, equation 2.3 can be changed as follows:

γ∗ = argmin
γ∈Γ

‖q1 − (q2 ∗ γ)‖2 , (2.4)

where q1 and q2 are the SRVFs of function f1 and f2, respectively. We employed equation 2.4 to
compute the shape distances for FHACS.

2.2.1. Amplitude distance

Next, we defined the amplitude distance. For any two functions f1, f2 ∈ F and the corresponding
SRVFs, q1, q2 ∈ L2, we defined the amplitude distance da (Srivastava and Klassen, 2016; Tucker et
al., 2013; Ahn et al., 2020) as follows:

da( f1, f2) = inf
γ∈Γ

(‖q1 − (q2 ∗ γ)‖) . (2.5)

In here, the distance da is a proper distance with three properties: symmetry, positive definiteness, and
triangle inequality (for more details, see Srivastava and Klassen (2016)).

2.2.2. Phase distance

We let γ1, γ2, . . . , γn ∈ Γ represent the set of observed warping functions. However, computing the
phase distance in a standard way has two central problems : 1) the infinite dimensionality and 2) Γ is
a nonlinear manifold (Tucker et al., 2013). To solve these issues, similar to the definition of SRVF, we
need to represent an element of γ ∈ Γ using the square root of its derivative,

√
γ̇ that this representation

simplifies the complicated geometry of Γ to a unit sphere. That is, ||
√
γ̇||2 =

∫ 1
0 γ̇(t) dt = γ(1) − γ(0).

Hence, the phase distance for the two functions is as follows:

dp( f1, f2) = cos−1
∫ 1

0

√
γ̇∗(t) dt, (2.6)

where γ∗(t) is the optimal time-warping function from equation 2.4. This definition is based on the
Fisher–Rao distance using SRVFs (Srivastava and Klassen, 2016; Tucker et al., 2013; Ahn et al.,
2020), following the properties below:

1. dp( f1, f2) = dp( f2, f1);
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2. dp( f1, f2) = dp( f1, a f2 + b) for any a ∈ R+ and b ∈ R;

3. dp( f1, f3) ≥ dp( f1, f2) + dp( f2, f3) for any f1, f2, f3 ∈ F .

2.2.3. Shape distance, combining the phase and amplitude distances

Based on two distances, as discussed, we defined the shape distance ds by combining two distances,
the phase and amplitude distances, as presented below:

ds( f1, f2) = λda( f1, f2) + (1 − λ)dp( f1, f2), (2.7)

where λ ∈ [0, 1] is a proportion tuning parameter. We can control both distances by weighting each
distance; for example, if λ = 0, the shape distance is focused on the phase distance dp(·). If λ = 1,
the shape distance can be simplified as the amplitude distance da(·). Moreover, if λ = 0.5, the shape
distance is the average of two distances: (1/2)(da(·) + dp(·)). For FHACS, this shape distance is
applied instead of the L2 distance to increase the efficiency and performance of the clustering analysis
by addressing the phase and amplitude variations.

3. Simulation studies

3.1. Simulation setting

To assess the performance of the functional hierarchical clustering algorithm using the shape distance,
we evaluated the model on simulated data constructed using the following:

f 0
i j(t) = ai j

1√
2πσ2

j

exp

− (t − µ j)2

2σ2
j

 , i = 1, . . . , 20, j = 1, . . . ,K, (3.1)

where µ j and σ j denote the mean and standard deviation for each j group, respectively. In addition, ai j

represents the parameter for the amplitude variation and t ∈ [0, 1]. Using equation 3.1, we generated
three simulated datasets, where each data point reflects the situation of generating clusters: 1) two
groups/clusters (K = 2) are based on the amplitude (µ j ∈ {0.5, 0.5}, σ j ∈ {0.1, 0.11}, and ai j = 1 for
all i, j), 2) two groups (K = 2) are based on the phase (µ j ∈ {0.35, 0.65}, σ j ∈ {0.1, 0.1}, and ai j = 1
for all i, j), and 3) three groups (K = 3) are based on both the phase and amplitude (µ j ∈ {0.4, 0.5, 0.6}
and σ j ∈ {0.1, 0.11, 0.13} with ai j ∼ N(1, 0.12)). Then, 20 functions are generated for each group j.
Therefore, the 40, 40, and 60 functions are generated for simulated Datasets 1, 2, and 3, respectively.
These given functions are perturbed using random time-warping functions {γi j} to obtain the observed
functions ( fi j = f 0

i j ◦ γi j).
Figure 1 presents the resulting simulated data using equation 3.1. Figure 1(a), Figure 1(c), and

Figure 1(e) show the simulated data that were perturbed by corresponding time-warping functions in
Figure 1(b), Figure 1(d), and Fig. 1f, respectively. We note that the warped functions of simulated
datasets have values of zero at t = 0 and t = 1. Since the functions are warped by the equation, fi j(t) =

f 0
i j(γi j(t)) where γi j(0) = 0 and γi j(1) = 1, the warped functions also should be fi j(0) = 0 and fi j(1) =

0. Figure 1(a) displays simulated Dataset 1 where the true clusters are based on an amplitude with two
clusters. The functions have phase variations that are noise. In addition, Figure 1(c) displays simulated
Dataset 2, where the true clusters are based on a phase with two clusters. Unlike simulated Dataset
1, functions have phase variation as noise, but two clusters are also distinguished by various phases.
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(a) Simulated Dataset 1 (amplitude-based clusters) (b) Corresponding time-warping functions, γi j(t)

(c) Simulated Dataset 2 (phase-based clusters) (d) Corresponding time-warping functions, γi j(t)

(e) Simulated Dataset 3 (amplitude and phase-based clus-
ters) (f) Corresponding time-warping functions, γi j(t)

Figure 1: Plots for simulated data. The functions are generated using equation 3.1 and then perturbed using
random time-warping functions {γi j} for each simulated dataset, i.e., (b), (d), (f) for simulated Dataset 1, 2, and
3, respectively. The clusters in each dataset are distinguished by color to mark the true number of clusters. For

example, simulated Datasets 1 and 2 have two clusters, whereas simulated Dataset 3 has three clusters.
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Therefore, removing the phase variations without consideration might provide incorrect results. Last,
Figure 1(e) presents three groups where the true clusters are based on the phase and amplitude, which
is a more complicated case when functions have both phase and amplitude variations as noise.

To demonstrate the effectiveness and clustering performance of the model, we compared FHACS
with three natural alternatives. These models are either commonly used in the literature or are mod-
ifications of current models addressing phase variability in functional data. These models are the
standard functional hierarchical agglomerative clustering model (SFHAC), the pre-aligned functional
hierarchical agglomerative clustering model (PAFHAC), and the elastic functional hierarchical ag-
glomerative clustering model (EFHAC). We summarize these three clustering models.

• SFHAC: This standard hierarchical agglomerative clustering (HAC) algorithm uses the L2 distance
instead of the Euclidean distance. The functions are defined in the L2 space; thus, the L2 metric is
applied for the statistical clustering analysis. Hence, equation 2.1 calculates the distance between
functional observations.

• PAFHAC: In this model, functional observations are pre-aligned (using a phase-amplitude sepa-
ration algorithm) (for more details, refer to Srivastava and Klassen (2016)), and then applied the
standard hierarchical clustering model. Phase variations are removed by aligning the functions
concerning their Karcher mean; hence, this is a registration problem for the groupwise case.

• EFHAC: In this model, functions are aligned pairwise while computing the distance between two
functions. The concept of the model is similar to that of FHACS, but this model only focuses on
the amplitude distance between two functions. The difference between PAFHAC and EFHAC is
that PAFHAC computes the Karcher mean of the functions, registers all functions concerning the
mean, and applies SFHAC. However, EFHAC computes the amplitude distance while removing the
phase distance between two functions each time. Hence, the clustering results should be the same
as when λ of FHACS equals 1 in equation 2.7 (i.e., ds( f1, f2) = da( f1, f2)).

We applied FHACS and the other three alternative clustering algorithms to compare the accuracy
of clustering performance. These models can easily be implemented using the existing R packages
from R software. We used the fdacluster (Stamm, 2024) R package for SFHAC and EFHAC. For
PAFHAC, we aligned multiple functions based on the phase-amplitude separation algorithm using the
fdasrvf R package (Tucker, 2024). We employed a dynamic programming algorithm to determine
the optimal time-warping functions, {γ∗i j}. For FHACS, we also used the fdasrvf R package (Tucker,
2024) to compute the phase and amplitude distances. Then, we used equation 2.7 to compute the
shape distance. We fixed all models to the HAC algorithm with complete linkage for consistency.

3.2. Clustering performance accuracy

To compare the clustering performance as a measurement, we calculated the Hubert–Arabie adjusted
random index (ARI), which is the corrected-for-chance version of the rand index (Rand, 1971; Hubert
and Arabie, 1985; Vinh et al., 2009), and is computed below:

ARI =
Index − Expected Index

Max Index − Expected Index
,

where the independent clusters have an expected index of zero and identical partitions have an ARI
equal to 1.
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Table 1: FHACS results for each simulated dataset

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sim. Dataset 1 0.03 0.031 0.031 1 1 1 1 1 1 1 1
Sim. Dataset 2 1 1 0.03 0.03 0.03 0.03 0.15 0.15 0.11 0.11 0.03
Sim. Dataset 3 0.24 0.13 0.15 0.57 0.35 0.26 0.26 0.30 0.29 0.26 0.27

ARI is computed for each λ, and bold font marks the highest ARI.

Table 2: Three alternative clustering results for each simulated dataset

SFHAC PAFHAC EFHAC
Sim. Dataset 1 −0.01 1 1
Sim. Dataset 2 0.03 0.01 0.03
Sim. Dataset 3 0.23 0.11 0.27

Bold font marks the highest ARI.

For the simulation experiments in the clustering analysis, we directly specified the true number of
clusters K (K = 2 for simulated Datasets 1 and 2, and K = 3 for simulated Dataset 3) and evaluated
the accuracy of the clustering results. We used the mclust (Scrucca et al., 2016) R package for the
ARI calculation.

3.3. Simulation results

Tables 1 and 2 list the clustering results for the simulation studies. For Table 1, the ARI is computed
for each λ to quantify the shape distance in equation 2.7. Based on the results of the tables, λ can
measure the weight between the amplitude and phase distances properly for the simulated data. For
example, clusters in simulated Dataset 1 were generated based on the amplitude; thus, phase variations
are true noise in this case. The model yields the best clustering results when λ is increasing; therefore,
the parameter weight is focused on the amplitude distance in equation 2.7.

Similarly, PAFHAC and EFHAC also performed well because these two models are clustering
models that focus on the amplitude distance after removing phase variation. The groups from sim-
ulated Dataset 2 were generated based on two distinct phases, and the results reveal that parameter
λ = 0 for FHACS has the best clustering performance. Unlike the performance of PAFHAC and
EFHAC for simulated Dataset 1, the accuracy of the two models was extremely poor because the
model only measures the amplitude distance. When the groups are based on phase and amplitude,
as in simulated Dataset 3, the tuning parameter λ was set at 0.3 for the best ARI. These simulation
results demonstrate that the parameter λ can adequately adjust the weight of two distances. That is, λ
plays a critical role in weighting amplitude and phase distances to improve clustering performance.

4. Application to real data

4.1. Description of real data

Functional data have phase and amplitude variability in several crucial application areas, such as
biology, human anatomy, biochemistry, images, and sensors. This section presents the results on
multiple real datasets for clustering methods using six examples from the University of California at
Riverside time-series classification archive (Chen et al., 2015, July). This database has information,
including the actual number of clusters and time points. Table 3 describes the data (for more details,
refer to Chen et al. (2015, July)).

Figure 2 presents the functional data for each real dataset: Gun Point (GP; Figure 2(a)), Toe
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Table 3: Description of the real data

Data # of obs., Time points Class Donor
Gun Point (GP) 50 150 2 A. Ratanamahatana & E. Keogh
Toe Segmentation (TS) 40 270 2 Tony Bagnall
Face Four (FF) 24 350 4 A. Ratanamahatana & E. Keogh
Cylinder-Bell-Funnel (CBF) 30 128 3 N. Saito
Italy Power Demand (IPD) 27 64 2 J.J. van Wijk & E. Keogh & L. Wi
Plane 105 144 7 J. Gao

Segmentation (TS; Figure 2(b)), Face Four (FF; Figure 2(c)), Cylinder-Bell-Funnel (CBF; Figure
2(d)), Italy Power Demand (IPD; Figure 2(e)), and Plane (Figure 2(f)). Each figure is colored to
distinguish the true number of clusters (2, 2, 4, 3, 2, and 7 for GP, TS, FF, CBF, IPD, and Plane,
respectively). From the figures, the phase and amplitude variability values are naturally found in the
data, as the observations are at different times for each measurement during collection.

4.2. Numerical results

Next, we applied FHACS and the other three alternative hierarchical clustering methods to these real
datasets. Similar to the simulation study, for FHACS, we set λ = {0, 0.1, 0.2, . . . , 0.9, 1} to determine
the optimal tuning parameter for measuring the weight between the phase and amplitude distances.
Table 4 lists the clustering performance results for FHACS, and Table 5 lists the results for the three
alternative models.

In Tables 4 and 5, FHACS provides better clustering performance than the other three competing
models. The clustering results in tables imply that the phase distance is also critical to classify groups
of functional data because most λ values are near 0 instead of 1. The clustering performance of TS,
FF, and Plane datasets especially outperformed when λ is equal to 0. Therefore, functional clustering
models such as EFHAC and PAFHAC that remove only phase variation without considering func-
tional data perform poorly on real data, implying that in many possible existing real datasets, phase
variation is from natural characteristics of functional observations. That is, FHACS performs better
when focused on both phase and amplitude distances. Like PAFHAC and EFHAC, focusing only on
amplitude distance when removing phase variation produces poor results because this method ignores
phase variation while analyzing functional data.

5. Concluding remarks and limitations

The functional clustering algorithm was developed for the FDA to improve clustering performance.
Many functional data have phase variability due to the lack of temporal synchronization across mea-
surements. Therefore, awareness has been rising regarding phase variability removal to improve
model clustering performance. However, removing or minimizing only the phase variation can be
problematic because functional data can also involve phase characteristics. Hence, we proposed a
state-of-the-art functional hierarchical clustering method that can measure both the phase and ampli-
tude distances, defined as the shape distance. We applied this hierarchical clustering model to three
simulated datasets to investigate clustering performance in different functional data situations, and we
applied it to six real datasets. The proposed method outperforms other alternative three functional
hierarchical clustering models. Moreover, this definition of the shape distance can be applied to other
clustering or classification methods, such as k-means and k-nearest neighbors, to address the phase
and amplitude components of functional data.

This study has some limitations. First, functional or multivariate standard hierarchical clustering
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(a) Gun point (GP) (b) Toe segmentation (TS)

(c) Face four (FF) (d) Cylinder-bell-funnel (CBF)

(e) Italy power demand (IPD) (f) Plane

Figure 2: Plots for real data. Each figure is colored differently to distinguish the true number of clusters.

suffers from choosing the optimal number of clusters, K, unlike other clustering algorithms, such as
k-means. Thus, it is challenging to determine which K is the optimal cluster for the hierarchical clus-
tering analysis. Moreover, we added a new tuning parameter, λ, to weight the phase and amplitude
distances; therefore, determining the optimal K and λ can be more complicated. However, this can be
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Table 4: Clustering performance results for the real data

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
GP 0.001 0.179 0.047 −0.003 0.003 0.003 0.003 −0.003 −0.003 −0.003 −0.003
TS 0.109 0.100 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
FF 0.659 0.514 0.514 0.514 0.514 0.444 0.179 0.179 0.213 0.240 0.240

CBF 0.028 0.059 0.020 0.059 0.091 0.059 0.241 0.110 0.110 0.145 0.145
IPD 0.110 0.110 0.110 0.573 0.110 −0.008 0.110 0.004 0.004 0.004 −0.008

Plane 1 1 1 1 1 1 1 1 0.806 0.806 0.806

Bold represents the highest ARI among the four clustering algorithms.

Table 5: Results for real data using the three alternative clustering algorithms

SFHAC PAFHAC EFHAC
GP 0.011 0.029 −0.003
TS −0.018 0.015 0.015
FF 0.369 −0.021 0.240

CBF 0.137 0.196 0.145
IPD 0.031 −0.008 −0.008

Plane 0.623 0.701 0.806

solved with domain knowledge for the functional data, for example, with the actual number of clus-
ters. Selecting a specific λ to improve the clustering performance gradually is another computational
problem. In this study, we set only one λ for one clustering analysis. The functional hierarchical
clustering algorithm computes the distance between two objectives; hence, each pair of functions is
likely to have a different optimal λ value. Clustering performance can be improved further if each λl

is set to l = {1, 2, . . . ,
(

n
2

)
} for n functional observations. However, this is nearly impossible due to the

computational costs.
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