Computational Structural Engineering
An International Journal
Vol. 1, No. 2, pp. 139~150(2001)

Computational Structural
Engineering Institute

Random Amplitude Variability of Seismic Ground Motions and Implications
for the Physical Modeling of Spatial Coherency

A.Zerva

Department of Civil & Architectural Engineering, Drexel University, 3141 Chestut Street,
Philadelphia, PA 19104, USA

Received July 2001; Accepted November 2001

ABSTRACT

An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions is presented.
The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around
the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for
the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the
spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the
surface motions is investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude
of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend

of the decay of coherency with frequency.
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1. Introduction

The spatial variability of seismic ground motions can
have a significant effect on the response of lifelines: it may
induce significant additional seismic loads in the structure,
than the ones induced if the motions at the structures’ sup-
ports are assumed to be identical. It has been recently rec-
ognized (EERI, 1999) that the spatial variation of seismic
ground motions can have a dramatic effect on the response
of extended structures. Presently, in studies performed by
the California Department of Transportation (Caltrans),
spatially variable ground motions are used as input motions
at the supports of various bridges, such as the West Bay
Bridge in San Francisco and the Coronado Bridge in San
Diego, California, USA (Abrahamson, 1993).

An inherent problem in incorporating the spatial vari-
ation of seismic ground motions in lifeline seismic design
criteria is that it has not yet been established which spatial
variability model from the extensive list that has appeared
in the literature (see, e.g., Zerva & Zervas, 2002, for a
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review) is the most appropriate one. Generally, spatial
coherency models are developed from analyses of data
recorded at a single site and for a single event, and are,
thus, event and site specific. Therefore, they cannot be
generalized and incorporated with confidence into seis-
mic design criteria. Attempts to fit generic models to dif-
ferent sites and events have not always been successful,
mainly because the models are based on purely statistical
measures. The statistical characterization of spatial vari-
ability results from the fact that its basic descriptor, the
spatial coherency, is associated with the phase variability
of the data, which is difficult to analyze and express in
terms of physical quantities.

An alternative methodology for the investigation of spa-
tially variable seismic ground motions recorded at dense
instrument arrays that provides insight into physical
causes affecting the seismic coherency has been developed
(Zerva & Zhang, 1997). The methodology was applied to
data recorded at the SMART-1 dense instrument array in
Lotung, Taiwan. For each event and direction (horizontal
or vertical) analyzed, the approach identifies a coherent,
common component in the seismic motions recorded over
extended areas. The common component represents a
coherent wave train that propagates with constant velocity
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on the ground surface and approximates to a satisfactory
degree the actual motions. The spatial variability of the
seismic ground motions is determined from the differences
between the recorded data and the coherent estimates of
the motions, and is caused by spatial arrival time delays at
the array stations associated with the upward traveling of
the waves through the site topography, and by variabilities
in both the amplitudes and phases of the motions around
the common component characteristics. It was shown that
the variabilities in amplitudes and phases of the motions
are correlated and, qualitatively, associated with physical
parameters.

This observation sets the bases for the physical inter-
pretation and modeling of coherency: Because amplitude
and phase varability are correlated, and because ampli-
tude variability is easier analyzed and modeled than phase
variability, it suffices to examine amplitude variability and
associate it with physical parameters, in order to express
accordingly the phase variability, and, consequently, the
spatial coherency. Analytical wave propagation schemes
need then be applied to detailed models of the sites in
order to quantify the causes for the amplitude and, hence,
the phase variation of the motions. However, each cause
needs to be isolated and examined independently of the
others, so that its effect on the ground surface amplitude
variability can be clearly identified. This study concen-
trates on local site effects, and, specifically, on the effect
of random soil variability on surface ground motions. A
one-dimensional model of the Lotung site is utilized. Sim-
ulations of seismic motions captaring the effect of ran-
domness in the shear wave velocity of the layers are gene-
rated. The comparison of the amplitude variability in the
simulations with that-of the actual recorded data provides
insight into one of the possible causes for the spatial vari-
ability in seismic ground motions. It needs to be emphasized
at this point that it is by no means implied that a one-dimen-
sional analysis captures all local site effects on the seismic
ground motions, which include,-among others, the dipping
angle of the site, the angle of incidence of waves, two-
dimensional effects etc. (see, e.g., Bard, 1994). The one-di-
mensional analysis is used as a first step in the identification
of possible physical causes for the spatial coberency.

Section 2 of this paper provides an outline of the
approach developed by Zerva and Zhang (1997), so that
the continuity in the development of the methodology for
the physical modeling of the spatial variability is presented
and comparisons between the recorded data and the ana-
lytical results are feasible. Section 3 presents the results of
the wave propagation analyses through the one-dimen-
sional model of the Lotung site. Finally, Section 4 presents

the conclusions of this work.

2. Amplitude and Phase Variability in Recorded
Data

For illustration and comparison purposes, the approach
developed by Zerva and Zhang (1997) is presented herein
for the strong motion shear-wave window in the N-S
direction of Event 5 (M, = 6.3 ) recorded at the SMART-1
array in Lotung, Taiwan. At the time of the earthquake, the
array consisted of 37 accelerometers arranged on three
concentric circles, the inner denoted by I, the middle by M,
and the outer by O with radii of 0.2, 1.0 and 2.0 km,
respectively. Twelve equispaced stations, numbered 1-12,
were located on each ring, and station C00 was located at
the center of the array (Fig. 1). The duration of the strong
motion window is 5.12 sec (7.0-12.12 sec actual time in
the records) with a time step of 0.01 sec.

Initially, signal processing techniques are applied to the
data for the identification of their apparent propagation
characteristics. The application of the conventional
method with slowness stacking to the data (Spudich &
Oppenheimer, 1986) determined ﬂ_’)le slowness of the
broad-band wave in the window as s ={0.1 sec/km, ~0.2
sec/km}, i.e., the waves impinge the array at an azimuth of
153° with an apparent propagation velocity of 4.5 kmy/sec.
The (horizontal) wave number, x = & K, K,) , of the motions
is related to the slowness through k= @s , where @ indi-
cates frequency in rad/sec. 5

The seismic motions at any location r on the ground
surface are then described by the superposition of sinu-
soidal functions and expressed as:

' P > 3
W7, 0) = Y ApSin(Kn T + 01+ 6,,) (1)
m=1

Each sinusoidal component is dgscribed by its (discrete)
frequency and wave number(w,,, k=) ; 4,, and ¢, are its
amplitude and phase shift, respectively. The amplitudes
and phases, 4,, and ¢,,, of the sinusoidal components can
be determined from the system of equations resulting from
the least-squares minimization of the egror function
between the recorded time histories, u(r,r), and the
approximate ones, u(7#) (Eq. 1), with respect to the
unknowns A,, and ¢,, (Zerva & Zhang, 1997):

L N
2
e=Y I wt)-u#,1)) 2)
i=lj=1
evaluated at discrete locations (stations) i and times j. Any
number L of stations-ranging from one to the total number
of recording stations-can be used for the evaluation of the
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signal amplitudes and phases. When L>1 in Eq. 2, the iden-
tified amplitudes and phases represent thé common signal
characteristics at the number of stations considered; when
L=1, the amplitudes and phases correspond to the motions
at the particular station analyzed.

Five stations (L=5) were initially used in Eq. 2 for the
identification of their common amplitudes and phases; the
stations are C00, 103, 106, 109 and 112 (Fig. 1), ie., the
center and inner stations of the array with 2 maximum sep-
aration distance of 400 m. Once the common charac-
teristics are identified from the least-squares minimiza-
tion of Eq. 2, they are substituted in Eq. 1, and an estimate
for the motions, termed “reconstructed” motions, at the
stations considered is obtained. The comparison of the
recorded motions with the reconstructed ones is presented
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Fig. 1. The SMART-1 Array,
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Fig. 2. Recorded and reconstructed strong shear-wave motions in
the N-S direction of Event 5.
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in Fig. 2. Since amplitudes and phases at each frequency
are identical for all five stations considered, the recon-
structed motions represent a coherent waveform that prop-
agates with constant velocity on the ground surface. Fig. 2
indicates that the reconstructed motions reproduce to a
very satisfactory degree the actual omes, and, although
they consist only of the broad-band coherent body wave
signal (Eq. 1), they can describe the major characteristics
of the data. The details in the actual motions, that are not
matched by the reconstructed ones, constitute the spa-
tially variable nature of the motions, after the wave pas-
sage effects have been removed.

Part of the variabilities in Fig. 2 is due to the fact that the
time history approximation (Eq. 1) does not allow for the
small time delays in the arrival of the waves at the various
stations caused by their upward traveling through the hor-
1zontal variations of the geologic structure underneath the
array. Their effect can be noted in Fig. 2, when, e.g., the
reconstructed motion at station 112 arrives later than the
recorded one. These arrival time perturbations are partially
eliminated in the approach through the alignment of the
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Fig. 3. Amplitude and phase variation of the aligned motions at
the center and inner ring stations.
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motions, which was performed with respect to the central
array station, C00 (Fig. 1). An average propagation veloc-
ity evaluated from the arrival time delays of the align-
ment process at all stations was compatible with the con-
stant slowness of the broad-band waves; however, the
delay identified at each station exhibited a random behav-
ior around the delay caused by the constant apparent prop-
agation velocity across the array (Zerva & Zhang, 1997).
In the following, aligned seismic ground motions are con-
sidered. For the identification of the amplitude and phase
variation of the aligned motions, the error function (Eq. 2)
is used again in the minimization scheme, but, in the sinu-
s_)oidg)l approximation of the motions (Eq. 1), the term
Kn-r 1s set equal to zero, since the aligned motions arrive
simultaneously at all armray stations.

Fig. 3 presents the amplitude and phase variation of the
sinusoidal components of the motions with frequency; the
wider lines in these figures indicate the common signal
characteristics, namely the contribution of the identified
body wave to the motions at all five stations, whereas the
thinner lines represent the corresponding amplitudes and
phases when one station at a time is considered in Eq. 2.
‘When only one station at a time (L=1 in Eq. 2) is used in
the evaluation of amplitudes and phases at different fre-
quencies for that particular station, the reconstructed
motion is indistinguishable from the recorded one. This
does not necessarily mean that the analyzed time histories
are composed only of the identified broad-band waves, but
rather that the sinusoidal functions of Eq. 1 can match the
sinusoidally varying time histories, ie., Eq. 2 becomes
essentially compatible to a Fourier transform. The com-
parison of the results at the individual stations with the
common ones (Fig. 3) provides insight into the causes for
the spatial variation of the motions: In the lower frequency
range (<1.5 Hz), amplitudes and phases identified at the
individual stations essentially coincide with those of the
common component. In the frequency range of 1.5-4.0
Hz, the common amplitude represents the average of the
site amplification, and phases start deviating from the
common phase. It is noted that phases were restricted in
the range [0,27), and, therefore, jumps of approximately
27z do not indicate drastic variation in their values. At
higher frequencies, the common amplitude becomes lower
than the ones identified at the stations, and phases vary
randomly.

Additional analyses were performed for the middle ring
stations (Zerva & Zhang, 1997). The common amplitude
and phase identified from the inner and middle ring station
data are remarkably similar (Fig. 4), particularly con-
sidering the facts that separate analyses were performed for

the two sets of stations, and that the longest separation dis-
tance of the middle ring stations is 2 km, whereas that of
the immer ring ones 400 m (Fig. 1). The agreement of the
common amplitudes and phases over an extended area of 1
km radius strongly suggests the existence of the coherent
component in the data. The common amplitude can be
viewed as a mean value representing the average ampli-
fication of the motions at the site and is associated with the
commmon phase that resembles random distribution
between [0,27) with frequency (Fig. 4). The spatial vari-
ation of the motions, in addition to their propagation effects
already considered, results from deviations in both ampli-
tudes and phases at the individual stations around the com-
mon component amplitude and phase (Fig. 2), which are
described in terms of normalized differential amplitudes
and differential phases presented in Fig. 5.

The normalized differential amplitudes (Fig. 5) are
obtained by subtracting at each frequency the common
amplitude from the amplitudes identified at the individual
stations and dividing by the common amplitude. The nor-
malized differential amplitudes are cut-off at a maximum
value of 7.5; their actual values, which are not important
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Fig. 4. Amplitude and phase variability of the inner and middle
ring stations’ common component.
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for the subsequent analysis, can be significantly high,
because the common component amplitude can assume
significantly low values at certain frequencies (Fig. 3).
Furthermore, because of their definition, the negative val-
ues of the normalized differential amplitudes cannot
become lower than (—1). The differential phases (Fig. 5)
are allowed to vary between [-7, + ) , rather than between
[0, 27), as was the case in Fig. 3. Envelope functions,
drawn by eye, containing the amplitude and the phase dif-
ferential range, are also shown in the figures. The phase
envelope functions are symmetric with respect to the zero
axis. Isolated peaks within the dominant site amplifi-
cation frequency range are excluded from both the ampli-
tude and phase envelope functions.

Fig. 5 indicates that the trend of the positive envelopes
of both amplitudes and phases is very similar, implying
that the amplitude and phase variability in the data around
their respective common component characteristics are
correlated. This observation allows the possibility of the
physical .interpretation and modeling of the phase vari-
ability in the seismic data, and, subsequently, the spatial
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coherency. Phase variability is difficult to visualize ‘and
attribute to physical causes. On the other hand, the. causes
for the amplitude variability are easier visualized .and
examined. If the variability of amplitudes and phases in
the seismic data are correlated, as the present analysis
indicates, it suffices to examine the physical causes for the
amplimde variability in the seismic motions, in' order to
recognize physical causes underlying the phase‘variability.
Indeed, the variability in amplitudes and, due to their cor-
relation, in phases presented in Fig. 5 can be “-qualita-
tively-associated with physical parameters: In the low fre-
quency range, the envelope functions for both amplitudes
and phases are at close distance to the zero axis; this is
attributed to the long wavelength of the contributing
waves at low frequencies, that do not “see” the site irreg-
ularities particularly for the relatively close-by stations of
the inner ring. As frequency increases within the dominant
site amplification frequency range, the distance of the
amplitude and phase envelope functions from the zero
axis increases gradually. In this range, the common ampli-
tudes reproduce the average of the site amplification (Fig.
3), implying that the motions are controlled by the bread-
band wave that is modified in amplitude and phase as it
traverses the horizontal variations of the layers under-
neath the array. The increase in the variabilities of ampli-
tudes and phases around the common component -as
frequency increases may also be associated with the
decreasing wavelength of the waves at increasing fre-
quencies, and to the more significant contribution of scat-
tered energy. At higher frequencies, past the dominant site
amplification frequency range, wave components in addi-
tion to the broad-band shear wave, and, mainly, scattered
energy (noise) dominate the motions. Because these wave
components propagate at different velocities, phases at
individual stations (Fig. 3) deviate significantly from the
common phase, and the common signal amplitude no
longer represents the average of the site amplification and
becomes lower than the amplitudes identified at the indi-
vidual stations. Consequently, the phase differences vary
randomly between (-, +7), i.e., the differential phase
envelopes are parallel to the zero axis ata distance equal to
7, and the normalized differential amplitudes assume high
values. Noise is also the cause of the isolated peaks in the
dominant frequency range of the motions: it occurs when
amplitudes are low within the dominant frequency range
of the motions (Fig. 3). Similar qualitative correlations in
the amplitude and phase variation of the motions around
the common component amplitude and phase have been
observed from the analysis of the middle ring station data
(Zerva & Zhang, 1997). In this case, however, the distance
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of the envelope functions for both amplitudes and phases
at lower frequencies is longer than that of the inner ring
stations, and the frequency range before differential phases
vary randomly between (—x,+n) and normalized dif-
ferential amplitudes assume high values is shorter than
that of the inner ring stations; both observations are an
expected consequence of the longer separation distance
between the middle ring stations (Fig. 1).

The envelope functions in Fig. 5 contain the variability
range of amplitudes and phases with respect to the com-
mon component for motions recorded at separation dis-
tances less than the maximum separation distance for the
area considered. Thus, the envelope functions, as upper
limits, are functions of frequency and maximum station
separation distance, i.e., 400 m for the inner ring data.
Constrained within the envelope functions, differential
amplitudes and phases vary randomly, suggesting that the
variability can be described by the product of the envelope
function -and a random number uniformly distributed
within a specific range. Differential amplitudes and phases
between the motions at different stations - rather than
between the motion at each station and the common com-
ponent: - also vary randomly within bounds of envelope
functions, that have trends very similar to those of the
envelope functions with respect to the common com-
ponent, an observation that can be readily made from Fig.
5. Differences in phases between stations are directly
related to coherency through envelope functions con-
taining their random variability.

Abrahamson (1992) established the relation between

Table 1. Soil Properties of Lotung Site

Layer H p Vs (cov)y, &

(m) (kg/m?) (mfsec) % %

1 1.2 19000 600 2474 5.0

2 1.8 20000 750 2566 6.0

3 45 1980.0 100.0 12.08 6.0
4 45 1900.0 90.0 9.12 6.0

5 6.0 1950.0 100.0 10.50 6.0

6 10.0  2130.0 1500 8.75 6.0

7 14.0 1870.0 130.0 3.88 6.0

8 18.0  1830.0 140.0 5.97 6.0

9 60.0 1900.0 400.0 5.63 1.0
10 80.0  2000.0 850.0 6.04 05
half space  ©© 2000.0 1700.0 6.79 0.5

phase variability and coherency, which is summarized in
the following: Let ¢y(@) and ¢,(w) be the phases at two
recording stations j and k on the ground surface, after the
wave passage effects have been removed. The relation
between ¢(w) and ¢(w) can be expressed as:

9 0)— ¢ (@) = By @) (@) 3)

in which, £;(®) are random numbers uniformly distrib-
uted between [-1, + 1], and f;(®) is a deterministic func-
tion of frequency and assumes values between 0 and 1.
By (w) indicates the fraction of the random phase variabil-
ity between [-m, +7) that is present in the phase differ-
ences of the motions between the two stations. For exam-
ple, if 3, (w) =0, there is no phase difference between the
two stations, and the phases are identical and fully deter-
ministic. In the other extreme case, i.e., when B(w) =1,
the phase difference of the motions between stations is
completely random. Based on Eq. 3 and neglecting the
amplitude variability in the data Abrahamson (1992) noted
that the mean value of the coherency, 7;(w) , after propa-
gation effects have been removed, can be expressed as:

sin{ (o) x

i) = P @

It is easy to verify from Eq. 4 that when the coherency
tends to one, ﬁjk(co) is a small number, i.e., only a small
fraction of randomness appears in the phase difference
between the motions at the two stations; as coherency
decreases, ,Bjk(co) increases, and, for zero coherency,
Bu(@)=1.

Equations 3 and 4 and Fig. 5 then indicate that the dif-
ferential phase variability identified by means of the
present methodology is equivalent to conventional coher-
ency estimates. However, the developed approach rec-
ognizes that the shape of the envelope functions, and, con-
sequently, the associated coherency is related to physical
parameters: In the low frequency range, where the enve-
lope functions are close to the zero axis, coherency
assumes values close to one; this behavior follows from
the phase differences in the low frequency range and is a
consequence of the signal wavelength. Within the dom-
inant site amplification frequency range of the motions,
where the envelope functions increase with frequency,
coherency decreases; this may be attributed to the dom-
inance of the body wave in the records, to the decreasing
wavelength of the motions, and to the more significant
contribution of scattered energy. In the higher frequency
range, where phases vary randomly between [-7x, +7) and
noise dominates, coherency assumes zero values.
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3. Seismic Ground Motion Simulations Through
Stochastic Layers

The identification of the correlation patterns of ampli-
tude and phase variability in the recorded motions around
the common, coherent component sets the basis for the
physical modeling of cobherency. As a first approach in
quantifying physical parameters affecting coherency, this
study analyzes the effect of randomness in the shear wave
velocity of the layers of a site on the surface motion ampli-
tude variability. For this purpose, a model of the soil pro-
file at the Lotung site (Wong & Luco, 1990) is utilized. It
is considered that the site can be approximated by ten hor-
izontal layers overlying the bedrock (half space). One-
dimensional wave propagation analysis is considered, and
Monte Carlo simulations are performed to capture the
effect of randomness in the shear wave velocity of the lay-
ers on the ground surface amplitude variability.

Wong and Luco (1990) presented a detailed examination
of the soil properties at the Lotung site. Based on geo-
technical and geophysical information, they derived a set
of models for the site, including possible variabilities in
the soil characteristics over short distances. Their soil
models were used to blindly predict the response of a con-
tainment model built at the site. In the following, their
high-strain model based on soil data and geophysical
information is used. This model is selected because: (i) it
is based on basic soil mechanics data and geophysical
information; and (ii) the high-strain model corresponds to
an equivalent linear model for strains compatible with
free-field ground motions characterized by peak ground
acceleration of 0.2 g, consistent with Event 5 (peak ground
acceleration of 0.24 g). It is emphasized at this point that
the information for the soil profile is restricted over a rel-
atively small area (50x100 m), swrounding the contain-
ment model; more significant variability in the soil char-
acteristics and profile ought to be expected at longer dis-
tances. Table 1 presents the soil model characteristics used
in the present analysis. The site consists of 10 horizontal
layers with a total depth of 200 m overlying the half space.
The height, H, density, p, mean value of the shear wave
velocity, V,, with its associated coefficient of variation,
(c.0.v)y,, and damping coefficient, &, of each layer are
also presented in the table.

One-dimensional shear wave propagation analyses (Aki
& Richards, 1980) on the model of the site are performed.
The analyses consider vertical incidence of an impulse
function at the interface between the half space and the
layers. Accordingly, the resulting motions on the ground
surface represent the impulse response functions of the
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site. It is also considered that, within each layer, the shear
wave velocity varies randomly, according to a upiform
distribution with mean and c.o.v. as presented in Table 1.
In order to identify the effects of the variability of each
layer on the resulting seismic ground motions, the char-
acteristics of all layers (including the half space) except
one at a time were considered deterministic and equal to
their mean value. Simulations are then performed by
allowing the shear wave velocity of one layer at a time to
vary randomly. In the last case, it is considered that the
shear wave velocity of all layers as well as the half space
vary randomly within their specified bounds. Once the
simulations for each case are obtained, the “common”
component of the simulations is identified and its arnpli-
tude evaluated. Normalized differential amplitudes are
obtained from the amplitude of each simulation and the
common component amplitude. Envelope functions con-
taining the variation of the amplitude of the simulations
around the common component amplitude are then deter-
mined, so that the effect of randomness in the shear wave
velocity at the site on the resulting surface motions is iden-
tified.

Fig. 6 presents the common component amplitude eval-
uated from the simulations that allowed random variability
in the shear wave velocity of all layers. For comparison,
the amplitude of a deterministic wave propagation analysis
utilizing the mean value of the shear wave velocity in each
layer (Table 1) is also presented. The amplitudes are nor-
malized with respect to the maximum value of the “deter-
ministic mean” amplitude. The shape of the response
functions in both cases is similar, except for the fact that
the common component is “smoother” than the “deter-
ministic mean”. For all simulations performed, the result-
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Fig. 6. Normalized amplitude of the analytically evaluated com-
mon component and the deterministic analysis using the mean
value of the shear wave velocity profile.
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ing site response functions showed similarity in shape; the
differences, however, between the smoother common
component and the more variable simulations identify the
causes for the spatial variability of the motions, as was
also the case in the comparison between the common
amplitude and the amplitudes identified at the individual
stations of the SMART-1 array (Fig. 3).

The comparison of the analytical common component
amplitude (Fig. 6) with the common component amplitude
obtained from the recorded data (Fig. 4) shows similarities
between the data and the analytical results: Both figures
indicate a sharp peak at the low frequencies, though the
one for the analytical results has a shorter bandwidth; this
may be attributed to the estimated damping coefficients
for the high-strain model developed for the site. Also, Fig.
6 suggests that the dominant frequency range of the
motions (Fig. 4) is captured by the analytical model,
though the decay of amplification is more prominent in the
analytical results, The differences in Figs. 4 and 6 should
be expected: As has been already indicated, a one-dimen-
sional wave propagation scheme can not fully represent
the actual site geometry and wave incidence, that have
been shown to affect seismic motions on the free surface
of a sediment site (e.g., Bard, 1994). Furthermore, the ana-
Iytical results are actually impulse response functions,
whereas the actual data contain information about source,
source-site and local site effects. It is, however, noted that,
in this initial approach for estimating causes underlying
the amplitude variability in the seismic motions, the ana-
Iytical results present a reasonable approximation of the
site response characteristics; the approach is, also, a sim-
ple, quantitative way to identify the degree to which vari-
ability in the characteristics of the site affects the surface
ground motions.

Envelope functions containing the variability of the nor-
malized differential amplitudes for representative layers
are shown in Figs. 7-10. Fig. 7 presents the envelope func-
tions for random variability in the shear wave velocity of
the top two layers, Fig. 8 the corresponding results for ran-
dom variability in the third and sixth layers, Fig. 9 the
ones for random variability in the eighth and ninth, and,
finally, Fig. 10 presents the case of random variability in
the shear wave velocity of the half space and the case
where the shear wave velocity varies randomly in all lay-
ers. In all cases, the envelope functions are essentially
symmetric around the zero axis, and their absolute values
do not exceed unity. It is noted that the positive normalized
differential amplitude variability obtained from the record-
ed data assumes significantly high values at higher fre-
quencies (Fig. 5). This difference, however, between the
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Fig. 7. Effect of the randomness in shear wave velocity of the top
and second layers on the surface motion amplimde.

analytical results and the actual data is expected: The sim-
ulations contain only the broad-band wave; hence, the
common component of the analytical results will always
represent an “average” of the simulations. On the other
hand, the recorded data contain additional wave com-
ponents, including scattered energy/noise, the presence of
which dominates as frequency increases, and is the cause
for the large amplitude variability in Fig. 5.

When the shear wave velocity of a layer varies, the
peaks and valleys of the resulting surface amplitudes are
shifted and their amplitudes change, so that the values of
the normalized differential amplitudes become high close
to the peaks and valleys of the site’s response (Fig. 6). Fig.
7-10 reflect this pattern and, in particular, indicate the fre-
quency range where the variability in the shear wave
velocity of the individual layers has a significant effect on
the resulting surface motions. Fig. 7 indicates that, al-
though the top layer is very thin (1.2 m), it has a significant
effect on the amplitude variability of the surface motions;
this is associated with the fact that its c.o.v. is quite large
(Table 1), as should be the case for the top layers of a site.
The envelope function for the normalized differential
amplitude variability for this layer increases with fre-
quency; this may be attributed to the decreasing wave-
length of the motions as frequency increases, so that the
layer becomes more “obvious” to the incoming waves at
higher frequencies. A similar pattern is observed for vari-
ability in the shear wave velocity of the second layer (Fig.
7); this layer is also thin (1.8 m) with a large c.o.v. (Table
1). The layer does also not affect the very low frequency
range of the motions; however, in this case, large ampli-
tude variability is observed from approximately 3 Hz and
above, i.e., from frequencies that are lower than those of
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the first layer. It is noted that randomness in the shear
wave velocity in these two top layers produces the highest
amplitude variations than in any other layer (Figs. 7-10).
For the third layer (Fig. 8), variability in amplitudes starts
in the low frequency range, is significant in the range from
3-8 Hz, and remains small as frequency increases past 8
Hz. Randomness in the shear wave velocity of layers
below the third one resulted in a similar pattern for the
amplitude variability; another example of the pattern is the
amplitude variability caused by random shear wave veloc-
ity in the sixth layer, which is also depicted in Fig. 8. It is
noted from Fig. 8 that the maximum amplitude of the
envelope functions decreases as the depth of the layers
from the ground surface increases. However, the distance
of the envelope functions from the zero axis in the very
low frequency range (<1 Hz) is longer for random shear
wave velocity in the sixth layer than in the third (Fig. 8);
the same observation can also be made for the amplitude
variability due to random shear wave velocity in the fourth
and fifth layer (not shown herein). This increase in the low
frequency range is again noted in the amplitude variations
for randomness in the shear wave velocity of the eighth
layer (Fig. 9)-and, also, for the seventh (not shown herein).
At first glance, it may appear that the small decrease in the
values of the shear wave velocities of the fourth, seventh
and eighth layers as compared to their swrounding ones
(Table 1) is the cause for this increase. To examine this
assumption, additional analyses have been performed for a
more simple Lotung site model, where the layers one and
two were combined to a single one, layers three, four and
five to a second, and layers six, seven and eight to a third;
the velocity of the combined layers was equal to the aver-
age of the original ones (Table 1), and no shear wave
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Fig. 8. Effect of the randomness in shear wave velocity of the third
and sixth layers on the surface motion amplitude.
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velocity reduction occurred with depth. Still, a similar pat-
tern was observed, particularly for the layer that con-
tained the original sixth, seventh and eighth ones (Table
1). The most probable cause for this behaviour is that the
randomness in the shear wave velocity of these layers
affects the amplitude and location of the first, dominant
peak of the site response (Fig. 6), and a small change in
this high peak causes large amplitude variabilities. For
random shear wave velocity in the ninth layer (Fig. 9) sig-
nificant amplitude variability is observed in the higher fre-
quency range. This may be attributed to the characteristics
of the layer (Table 1): it is the first layer with a dramatic
change in shear wave velocity, damping and depth, asso-
ciated with a significant shear wave velocity c.0.v. A sim-
ilar, but much less dramatic, behavior is observed in the
simulations for random shear wave velocity of the tenth
layer. Random variability in the half space shear wave
velocity produces, essentially, the lowest amplitude vari-
ability in the surface motions (Fig. 10). Fig. 10 also pre-
sents the envelope functions for the simulations when ran-
dom shear wave velocity in all layers including the half
space is considered. The resulting envelope functions for
the latter case show significant amplitude variability
throughout the entire frequency range, that is associated
with the much more significant shifts in frequency and
change in amplitude of the peaks and valleys of the site’s
response (Fig. 6).

An interesting observation can be made regarding the
amplitude variability obtained from the envelopes of the
simulated motions (Figs. 7-10) in comparison to the one
obtained from the actual data (Fig. 5). The envelopes of
normalized differential amplitude variability when random
shear wave velocity in one layer at a time is considered are
fairly consistent with the normalized amplitude variability
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of the recorded data. The consistency is, of course, con-
ditional on the fact that the actual motions contain com-
ponents in addition to the broad-band wave, that dom-
inate as frequency increases and cause the large positive
normalized differential amplitude variability in Fig. 5.
Another difference between the amplitude envelope func-
tions of the analytical results and the recorded data is the
high peak in the low frequency range (<1 Hz) that is
observed in Fig. 9. As already indicated, this peak in the
envelope functions is associated with the first dominant
frequency of the analytical motions, that is lower than that
of the actual ones (Figs. 3 and 6). The value of this peak in
the amplitude envelope functions is significantly amplified
when randomness in the shear wave velocity of all layers
is considered (Fig. 10); its value actually exceeds the value
of the amplitude envelope function obtained from the
recorded data (Fig. 5): The envelope functions for the
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envelopes of normalized amplitude variability
0.80

0.60 — top sixlayers (+)
——top sixlayers (-)

0.40

0.20

000 4

-0.20

-0.40 4

-0.60

-0.80 T T t T
0.00 300 .00 5.00 12.00 15.00

frequency (Hz)
Fig. 11. Effect of the randommness in shear wave velocity of the top
six layers of the site on the surface motion amplitude.

actual data assume values (—0.2, +0.2), (-0.4,+0.4), and
(0.7, +0.7) at, approximately, 1 Hz, 2 Hz, and 3 Hz,
respectively (Fig. 5). The envelope functions of the sim-
ulated motions with random shear wave velocity in all lay-
ers reach values past the range (0.5, +0.5) at frequencies
below 1 Hz. This may be an artifact of the high-strain
Lotung site model that considers significantly low values
of damping, but it also implies that the consideration of
random variability in the shear wave velocity of all layers
may be excessive. Indeed, Anderson et al. (1996), sug-
gested that, if a site can be sufficiently well approximated
by a one-dimensional model, the first 30 m control the
response; in the present case, this implies layers one to six
(total depth of 28 m).

Fig. 11 presents the envelope functions of the simu-
lations generated with the consideration that the shear
wave velocity of the top six layers (Table 1) varies ran-
domly. Although it is by no means implied that the results
of a one-dimensional wave propagation analysis with ran-
dom shear wave velocity in the top layers (Fig. 11) would
capture the amplitude variability of actual recorded data
(Fig. 5), the comparisons of Figs. 5, 10 and 11 suggests
that random shear wave velocity in the top 28m of the
array (Fig. 11) produces envelope functions for the nor-
malized amplitude variability more consistent with that of
the recorded data (Fig. 5), than when random shear wave
variability in all layers is considered (Fig. 10). As already
indicated in the previous section, the variation of the
amplitude variability of seismic ground motions around
the amplitude of the common component is correlated
with the phase variability around the common phase; the
phase variability is then related to the coherency (Egs. 3
and 4). For illustration purposes only, Fig. 12 presents an
estimate for the spatial coherency, if randomness in the
shear wave velocity of the six top layers of the site is con-
sidered. It is noted that Fig. 12 represents the coherency of
seismic motions with respect to the common component,
rather than between two different simulations, as would be
the conventional definition of coherency. The coherency
plotin Fig, 12 was obtained from the envelope function of
Fig. 11 and Eq. 4, with the assumption that the peak of the
envelope function in Fig. 11 corresponds to the maximum
value of the phase (i.e., 7). Since the soil variability in the
data provided by Wong & Luco is valid for an area of 50
%100 m, the coherency estimate in the figure is valid up to
the maximum separation distance between points in the
area, namely its diagonal (111.8 m). The illustration of the
analytical coherency in Fig. 12 indicates that its value
drops when the value of the amplitude envelope increases
(Fig. 11), and, accordingly, becomes smallest at the peak
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of the envelope function. At high frequencies, the illus-
trative coherency increases, as expected: since the simu-
lations contain only the broad-band wave, seismic motions
are correlated even at high frequencies. It needs to be
emphasized at this point that the coherency presented in Fig.
12 is by no means intended as a “site-specific” coherency; it
is presented as an illustration of the possibility of the
approach. Additional causes for the amplitude variation of
the motions need to be fully analyzed before a conclusive
site-specific coherency estimate is obtained.

4. Summary and Conclusions

Coherency is a measure of the correlation of seismic
motions over extended areas. It is obtained from regres-
sion analyses of data with large scatter, and represents the
phase variability in recorded seismic motions; as such, its
analytical modeling becomes difficult. An alternative
methodology for the investigation of spatially variable
ground motions has been developed (Zerva & Zhang,
1997). The approach identifies a common, coherent com-
ponent in seismic motions recorded over extended areas
for each event, direction and time window analyzed. The
spatial variation of the motions is then determined from
the differences between the recorded data and the coherent
estimates of the motions. The application of the approach
to data recorded at the SMART-1 array in Lotung, Taiwan,
revealed that the variabilities in the amplitudes and phases
of the motions recorded at individual stations around the
common component characteristics are correlated. This
observation sets bases for the physical interpretation and,
eventually, modeling of coherency: Because the deviations
of amplitudes and phases around the common component
are correlated, it suffices to examine amplitude variability
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and attribute it to physical causes, in order to express
accordingly the phase variability and, consequently, the
spatial coherency.

This study presents the first effort in quantifying one
possible cause for the amplitude variability of the motions
on the surface of the SMART-1 site. It concentrates on
local site effects and, specifically, on the investigation of
the effects of randomness in the shear wave velocity of
horizontal layers on the amplitude variation of surface
motions. A one-dimensional wave propagation scheme
with vertical incidence of shear waves is utilized in sim-
ulations. The simulated motions capture the effect of vari-
ability in the shear wave velocity of one layer at a time, as
well as variability in all layers including the half space. It
is found that, although the top two layers at the site are
thin, their contribution to the amplitude variability is sig-
nificant over the entire frequency range. The lowest
amplitude variability, for the site under consideration, is
caused by the variability in the shear wave velocity of the
half space. The intermediate layers produce similar ampli-
tude variability, dependent on the c.o.v. of their shear
wave velocity, and consistent with the fact that a change in
shear wave velocity causes a shift in the frequency loca-
tion and change in the amplitude of peaks and valleys of
the site’s response. It is also found that the consideration
of random variability in all layers can be excessive: The
amplitude variability in the simulations exceeds that of the
recorded data. On the other hand, the variability in the
shear wave velocity of the top (in the present case, six)
layers produces results consistent with those of the
recorded data for the site under consideration and under
the limitations of a one-dimensional model. As an illus-
tration of the approach a possible estimate of the coher-
ency based on the randomness in the shear wave velocity
of the site’s top six layers is also presented. The present
analysis indicates that, when all causes for the amplitude
variation of the seismic ground motions have been con-
sidered and the significant ones identified, a “site-spe-
cific” coherency estimate can be feasible; analyses to-
wards this goal are presently under way.
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