• Title/Summary/Keyword: Petrov-Galerkin Method

Search Result 48, Processing Time 0.026 seconds

Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method (동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Capacitance matrix method for petrov-galerkin procedure

  • Chung, Sei-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.461-470
    • /
    • 1995
  • In this paper a capacitance matrix method is developed for the Poisson equation on a rectangle $$ (1-1) Lu \equiv -(u_{xx} + u_{yy} = f, (x, y) \in \Omega \equiv (0, 1) \times (0, 1) $$ with the homogeneous Dirichlet boundary condition $$ (1-2) u = 0, (x, y) \in \partial\Omega $$ where $\partial\Omega$ is the boundary of the region $\Omega$.

  • PDF

The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis (페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • According to ow previous study, we confirmed That the Petrov-Galerkin natural element method(PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method(BG-NEM). This paper is an extension of PG-NEM to two-dimensional geometrically nonlinear problem. For the analysis, a linearized total Lagrangian formulation is approximated with the PS-NEM. At every load step, the grid points ate updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates The large deformation problem.

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method (페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석)

  • 이홍우;조진래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF

Numerical Formulation for Flow Analysis of Dredged Soil (준설토 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.