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CAPACITANCE MATRIX METHOD
FOR PETROV-GALERKIN PROCEDURE

SE1IYOUNG CHUNG

1. Introduction

In this paper a capacitance matrix method is developed for the Pois-
son equation on a rectangle

(1'1) Lu = —(UII + “yy,) = fa (‘T? y) € Q = (Oa 1) x (07 1)
with the homogeneous Dirichlet boundary condition
(1-2) u=0, (z,y)€ o0

where 9 is the boundary of the region Q.

This method considered here is an application of the cubic spline
method of I. Sloan in [1] to the boundary value problem in two space
variables and is basically the discretization of the H'-Galerkin method
on an n X n uniform partition, which is a Petrov-Galerkin procedure
using a trial space of bicubic splines, a test space of piecewise-bilinear
functions, and the composite Simpson’s 9-point rule or the composite
4-point Gaussian quadrature for the integrals in two dimension. Then
the resulting linear system is slightly different from the one which can
be solved at the cost of O(n? logn) by a matrix decomposition method
using fast Fourier transforms(FFT). The capacitance matrix method
utilizes this special structure to solve the linear system at the cost
of O(n®), which is not optimal but quite efficient considering that the
number of the unknowns is n, a quarter of the number of the unknowns
in the orthogonal spline collocation. Notice that the existence and the
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uniqueness of the approximation for this method follow directly from
[1]. The order of convergence will be dicussed in section 2.

The method may be viewed as a “qualocation” approximation(i.e.
a quadrature-based modification of the collocation approximation) in
[2,3] for the boundary-integral equations on smooth curves. The H!-
Galerkin method with Dirichlet boundary conditions was proposed by
de Boor[4] and was also analyzed by G. Fairweather[5]. But only the
O(h®) convergence was obtained in [4]. The modified cubic spline collo-
cation method, an O(h*) cubic spline method developed independently
by Archer[6] and Daniel and Swartz[7], employs nodal cubic spline col-
location for the solution of a higher order perturbation of the differ-
ential equation. Another O(h*) cubic spline method can be found in
Chawla and Subramanian|[g].

The practical difficulty in the H'-Galerkin method lies in evaluating
the inner products i.e. the integrals. But it can be overcome with ease
in this discrete H'-Galerkin procedure, and the matrix in the resulting
linear system can be determined once for all for any number n. Further-
emore it has a special structure as discussed in section 2. An algorithm
involving fast direct method and capacitance matrix technique will be
constructed in section 3.

2. Petrov-Galerkin procedure

Given n > 1, let Q) be a uniform partition of the region 2
Qp = {(zi,yj) I x; =1th, y; =jh, i, =0,1,...,n, h= 1/71}.

Let S(21) C C?*(Q) be the set of bicubic splines defined on the uniform
partition {4 which satisfy the homogeneous boundary condition (1-2).
Let T(2:) be the set of piecewise-bilinear functions on ), which do
not satisfy the boundary conditions. Then the discrete H!-Galerkin
method of (1] is: find uy € S(24) such that

(2'1) < L'llh, Zp >=< fs zZp >, Zh € T(Qh)a

where
<u,v >= Qp(uv)
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and Q4 is a quadrature rule. In this paper the composite Simpson’s
9-point rule in two dimension, a rule with fourth-order error, for the
partition £, will be employed, see[14, chapter 5]:

2 n“- n—1
Qr(u) = — E Uij + Uit1,j + Wi j41 + Uidd,j+1

+ 4(Ui+1/2,]' + Wi j41/2 + Uit j+1/2 + Ui+1/2,j+1) + 16Ui+1/2,j+1/2]a

where u; ; = u(zi,y;) and 2i41/2 = (@i + 2i41)/2. The composite 4-
point Gauss rule may be employed and the method here can be applied
to the resulting system.

To discuss the order of convergence, we notice that it is well known
that there exists a positive constant v such that

(2-2) ILullL,0) 2 Yulla2 o)

if u satisfies the boundary conditions (1-2), where H™({2) is the Sobolev
space equipped with the norm

1/2

lullgmy = | Y. ID%]},@
oglal<m

for any positive integer m. This inequality (2-2), v € H®(Q) and a
quadrature rule with fourth-order error in (2-1) satisfies the assump-
tions of theorem 4.1 in [1]. It therefore follows from theorem 4.1 of [1}
that (2-1) has a unique solution u;, € S(Q) satisfying

= wnll iy € vh* 7 lullmey.  i=0,1,2.

Let B,‘(m), for 0 < ¢ < n, be the cubic spline with the support
[*i—2,Zit2] in one space variable over the extended partition

T 3< T 2<T1<2)< - <Tp <Tp41 << Tp+2 < Tn+3,
zg =kh, k=-3,-2-10,...,n,n+1,n+2,n+3, h=1/n,
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such that
2/3 fi=j
Ba;)=4 1/6 ifi=j+1
0 if otherwise.

We difine the cubic B-spline Bi(x), for 0 < i < n, satisfying the
homogeneous boundary conditions (1-2):

By(z) = By(z) — 4B_(z), Bi(z) = By(z) - B_, (z),

B;i(z) :Bi(:c), 1=2,3,...,n—2,

Bn_1(2) = Bu_i(2) = Bayi(z), Bu(z) = Bu(z) - 4Buys(a).

Then we may represent an approximation uj € S(2p) by

n n
up, = Z Z wiiBri(x,y),

k=0 =0
where Byy(z,y) = Bi(z)Bi(y), for k,1 =0,1,...,n.
We mean z;(z), for 0 < j < n, by piecewise-linear “hat” function
In one space variable with support [zj1,2541]:
(21) 1 iy =%k
zi(zp) =
AN 0 if otherwise.
The equation (2-1) is equivalent to

n

(2-3) Zzwu < LBy, zij >=< [, iy >, t,3=0,1,...,n,

M k=0 I=0

where z;5(z,y) = zi(2)z;(y). Let’s define the following:

f= (fOO» ... ,fgn, e ,fng, ey fnn)'p, f,']‘ = 864 < f, 2i5 >,

T
W = (W00, -+, Wony- -y Wroy -y Wrn) s

1
A =(ai;), aj;= ——6/1/ B"(2)zi(a)dx, 4,5 =0.1,...,n,
0

1
B = (bij), b= 144/1—1/ z(z)Bj(z)de, 1,7 =0,1,....n.
0
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With this notations, the equation (2-3) can be represented by means
of matrix decomposition

(2-4) (A®B+B®A)w =1,

where x denotes the tensor product and (n + 1) x (n + 1) matrices A
and B are

A = e
-1 -2 6 -2 -1
-1 -2 7 2
\ -1 2 11
19 22 1
28 771 32 1
1 32 78 32 1
1 32 78 32 1
B o= |
1 32 78 32 1
1 32 77 28
1 22 19

As we see, the equation (2-4) has a special structure. In the next
section we develop an efficient algorithm uilizing this structure.

3. Algorithm

Let T(a, b) denote the symmetric pentadiagonal matrix of order m =
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n+1

T(@,8) = | oo

and S = (s;;) the unitary matrix of order m whose (i,j)-component is

2 .oy
sin ,
m+1 m+1

S = ,3=12,...,m.

PRrRoPOSITION. {T(a,b) | a,b € R} is a simultancously-diagonaliz
able family of matrices. That is, for any real numbers a and b,

S§T(a,b)S = diag(dy,ds,...,dm),

where diag(d;,d>,... ,dm) denotes the diagonal matrix with digonal
elements d;.’s and

dp =a—2~—2bcosby +4cos’ 8, 6= , k=1,2,...,m.

Proof. See [9] and [10].

Let T; = T(a;,b;) and ST;S = D;, i = 1,2, where S and T!s are
m X m matirces defined as above and D!s are m x m diagonal matrices.
To solve a linear system of m? unknowns of the form

(3-1) (Ti@T+T: @ Th)w = f,

where w and f are m?-dimensional vectors, we can formulate a fast di-
rect algorithm based on the matrix decomposition using the fast Fourier
transforms(FFT). This algorithm is similar to that of Fairweather[11].
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It follows immediately from the above Proposition and the properties
of matrix tensor product that the equation (3-1) is equivalent to

(3-2) (D1 ® D2+ Dy © D1)(S® S)w = (5® S)f,

which in turn shows that the following algorithm holds.

Fast direct algorithm
1. Compute f = (S® SHf.
2. Solve (D] @ Dy + D2 ® D )\i’ =f.
3. Compute w = (5® S)w.

It can be easily verified that the step 1 and the step 3 of the algo-
rithm can be performed by FFT at the cost of O(m?logm). There-
fore the total amount of arithmatic operations of the algorithm is
O(m? log m) since the coefficient matrix of the system in step 2 is the
diagonal matrix of order m?. Notice that all steps of the algorithm can
be implemented for parallel computations, see[11].

Let @ and R be nonsingular matrices of order m? whose k-th rows
are different from each other only for k € K, where X is any subset of
the index set {1, 2,... ,7712}. Define an m?2-dimensional vector b = (i),)
for a given m?-dimensional vector b = (b;)

13,-2{0’ ifiel

b;, if otherwise.
We seek the solution of Bx = b in the form

X = Y‘Jf‘zvigia v; € R,
iEX

where y is the solution of the equation Qy = b and gi's are m*-
dimensional vectors to be determined. Let e; denote the i-th standard
unit vector and (x); the :-th component of a vector x for any :. We
now describe the capacitance matrix technique, see {12,13].

Capacitance matrix algorithm
1. Solve Qg; =e;, 7 €K.



468 Seiyoung Chung

2. Compute the capacitance matrix C = (¢4;):

ci; = (Rgjli, )€K

3. Solve Qy = b.

4. Compute h = (h;), h;=b—(Ry)i;, 1€K.
5. Solve Cv = h.

6. Solve Qx =b + 3, cvies, v=(v:), i€K.

It is easy to verify that

(Rx); = (Ry); + Z (Rg:i);

1€EXK
{b+zz€h i(ei); =0b; +0=10;, ifjek
(Ry +Z,€,\l cji=(Ry);+h; =b;, ifj¢gk,

which justifies the algorithin. Note that the capacitance matrix C is
usually dense and hence that the algorithin is useful only when @x = b
can be solved easily and the number of different rows is quite small
comparing to the order of the coefficient matrix R.

Introducing

Ty = ~T(—6,2), T, = T(78,32)

Q=TT +TroT, R=A@B+B@A,

we see that the capacitance matrix method with the fast direct algo-
rithm may be applied to solve the equation (2-3) and the index set K
1s
K= {k =(t—1)m+y | (i=12m~-1m, 3 =12,...,m)
or(t=1,2,...,m, j=1,2,m — 1,m)}.
The number of elements of the index set K is 8m — 16. Therefore the
step 1 requires the arithmatic operations of O(m?®logm) if the fast

direct algorithm is applied without any modification. To reduce the
order of the cost by one, we may take advantage of the structure of
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R. Since matrices 4 and B are pentadiagonal, it can be easily verified
that for ¢ = (k — 1)m + [,

k+2 I1+2

(Rg;)i = Z Z (bisarr + arsbir )(g;)sr

r=k—2s={-2

and hence that to calculate ¢;; = (Rg;), for all i € K in step 2, we
need only 16(m — 4) elements of the vector g;, not all of them:

{(g)i |1 € H},
H = {i:(r—l)m+3l
(r=1234m=-3m=-=2m-1,m, s=1,...,m)

or (r=253,6,....m—4. s=1,2,3,4,m —3,m -2, m— 1,m)}.

We have shown that the capacitance matrix C can be formulated at the
cost of O(m?). Now for each j € K in step 1, we solve (gj)i’s only for
¢ € H not for all 7 at the cost of O(m log m) by means of FFT. Therefore
the step 1 requires the arithmatic operations of Q(m? logm). It is easy
to see that the cost for step 3, step 4 and step 6 are O(m? logm),
O(m?) and O(m? log m) respectively. The matrix C in step 5 1s a dense
matrix of order (8m — 16), which means that our algorithm requires
the arithmatic opertions of O(m*) or O(n®) in total.
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