• 제목/요약/키워드: Petersen graphs

검색결과 5건 처리시간 0.016초

ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS

  • Zitnik, Arjana;Horvat, Boris;Pisanski, Tomaz
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.475-491
    • /
    • 2012
  • In 1950 a class of generalized Petersen graphs was introduced by Coxeter and around 1970 popularized by Frucht, Graver and Watkins. The family of $I$-graphs mentioned in 1988 by Bouwer et al. represents a slight further albeit important generalization of the renowned Petersen graph. We show that each $I$-graph $I(n,j,k)$ admits a unit-distance representation in the Euclidean plane. This implies that each generalized Petersen graph admits a unit-distance representation in the Euclidean plane. In particular, we show that every $I$-graph $I(n,j,k)$ has an isomorphic $I$-graph that admits a unit-distance representation in the Euclidean plane with a $n$-fold rotational symmetry, with the exception of the families $I(n,j,j)$ and $I(12m,m,5m)$, $m{\geq}1$. We also provide unit-distance representations for these graphs.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.

그래프 위에서의 Pebbling 수 (Pebbling Numbers on Graphs)

  • 천경아;김성숙
    • 자연과학논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2002
  • 연결 그래프의 꼭지점에 자갈이 분포되어 있다고 하자. 한 꼭지점에서 두 개의 자갈을 취하여 한 개의 자갈만을 인접한 꼭지점에 보내는 이동을 할 때, 자갈이 분포될 수 있는 모든 경우에서 임의의 꼭지점에 한 개의 자갈을 보내기 위해 필요한 최소의 자갈의 수를 그 그래프의 pebbling number 라고 한다. 이 논문에서 Petersen Graph의 pebbling 수를 계산하였고 complete bipartite 그래프 $K_{m,n}$과 꼭지점의 수 h가 4개 이상인 complete 그래프의 categorical product 의 pebbling number가 (m+n)h 이 됨을 보였다.

  • PDF

ON THE MINIMUM ORDER OF 4-LAZY COPS-WIN GRAPHS

  • Sim, Kai An;Tan, Ta Sheng;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1667-1690
    • /
    • 2018
  • We consider the minimum order of a graph G with a given lazy cop number $c_L(G)$. Sullivan, Townsend and Werzanski [7] showed that the minimum order of a connected graph with lazy cop number 3 is 9 and $k_3{\square}k_3$ is the unique graph on nine vertices which requires three lazy cops. They conjectured that for a graph G on n vertices with ${\Delta}(G){\geq}n-k^2$, $c_L(G){\leq}k$. We proved that the conjecture is true for k = 4. Furthermore, we showed that the Petersen graph is the unique connected graph G on 10 vertices with ${\Delta}(G){\leq}3$ having lazy cop number 3 and the minimum order of a connected graph with lazy cop number 4 is 16.