References
- B. Alspach, The classification of Hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983), no. 3, 293-312. https://doi.org/10.1016/0095-8956(83)90042-4
- L. W. Berman, A characterization of astral (n4) configurations, Discrete Comput. Geom. 26 (2001), no. 4, 603-612. https://doi.org/10.1007/s00454-001-0041-z
- M. Boben and T. Pisanski, Polycyclic configurations, European J. Combin. 24 (2003), no. 4, 431-457. https://doi.org/10.1016/S0195-6698(03)00031-3
- M. Boben, T. Pisanski, and A. Zitnik, I-graphs and the corresponding configurations, J. Combin. Des. 13 (2005), no. 6, 406-424.
- I. Z. Bouwer, W. W. Chernff, B. Monson, and Z. Star, The Foster Census, Charles Babbage Research Centre, 1988.
- F. Buckley and F. Harary, On the Euclidean dimension of a wheel, Graphs Combin. 4 (1988), no. 1, 23-30. https://doi.org/10.1007/BF01864150
- K. B. Chilakamarri, The unit-distance graph problem: A brief survey and some new results, Bull. Inst. Combin. Appl. 8 (1993), 39-60.
- H. S. M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950), 413-455. https://doi.org/10.1090/S0002-9904-1950-09407-5
- P. Erdos, F. Harary, and W. T. Tutte, On the dimension of a graph, Mathematika 12 (1965), 118-122. https://doi.org/10.1112/S0025579300005222
- R. Frucht, J. E. Graver, and M. E. Watkins, The groups of the generalized Petersen graphs, Proc. Cambridge Philos. Soc. 70 (1971), 211-218. https://doi.org/10.1017/S0305004100049811
- S. V. Gervacio and I. B. Jos, The Euclidean dimension of the join of two cycles, Discrete Math. 308 (2008), no. 23, 5722-5726. https://doi.org/10.1016/j.disc.2007.10.035
- B. Grunbaum, Configurations of Points and Lines, Graduate Studies in Mathematics, 103. American Mathematical Society, Providence, RI, 2009.
- H. Hadwiger, Ungeloste probleme no. 40, Elem. Math. 16 (1961), 103-104.
- B. Horvat, Unit-distance representations of graphs, Ph.D thesis (in Slovene), University of Ljubljana, 2009.
- B. Horvat and T. Pisanski, Unit distance representations of the Petersen graph in the plane, Ars Combin., (to appear).
- B. Horvat and T. Pisanski, Products of unit distance graphs, Discrete Math. 310 (2010), no. 12, 1783-1792. https://doi.org/10.1016/j.disc.2009.11.035
- B. Horvat, T. Pisanski, and A. Zitnik, Isomorphism checking of I-graphs, Graphs Combin., to appear, doi: 10.1007/s00373-011-1086-2.
- M. Lovrecic Sarazin, A note on the generalized Petersen graphs that are also Cayley graphs, J. Combin. Theory Ser. B 69 (1997), no. 2, 226-229. https://doi.org/10.1006/jctb.1997.1729
- H. Maehara and V. Rodl, On the dimension to represent a graph by a unit distance graph, Graphs Combin. 6 (1990), no. 4, 365-367. https://doi.org/10.1007/BF01787703
- R. Nedela and M. Skoviera, Which generalized Petersen graphs are Cayley graphs?, J. Graph Theory 19 (1995), no. 1, 1-11. https://doi.org/10.1002/jgt.3190190102
- T. D. Parsons and T. Pisanski, Vector representations of graphs, Discrete Math. 78 (1989), no. 1-2, 143-154. https://doi.org/10.1016/0012-365X(89)90171-4
- M. Petkovsek and H. Zakrajsek, Enumeration of I-graphs: Burnside does it again, Ars Math. Contemp. 2 (2009), no. 2, 241-262.
- T. Pisanski and A. Zitnik, Representing Graphs and Maps, Topics in Topological Graph Theory, Series: Encyclopedia of Mathematics and its Applications, No. 129. Cambridge University Press, 2009.
- A. Soifer, The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators, Springer, illustrated edition, 2008.
- A. Steimle and W. Staton, The isomorphism classes of the generalized Petersen graphs, Discrete Math. 309 (2009), no. 1, 231-237. https://doi.org/10.1016/j.disc.2007.12.074
- M. E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combinatorial Theory 6 (1969), 152-164. https://doi.org/10.1016/S0021-9800(69)80116-X
Cited by
- On the odd girth and the circular chromatic number of generalized Petersen graphs vol.33, pp.3, 2017, https://doi.org/10.1007/s10878-016-0013-0
- GI-graphs: a new class of graphs with many symmetries vol.40, pp.1, 2014, https://doi.org/10.1007/s10801-013-0484-3
- Dilation coefficient, plane-width, and resolution coefficient of graphs vol.170, pp.2, 2013, https://doi.org/10.1007/s00605-013-0482-5