• Title/Summary/Keyword: Personalized Information

Search Result 1,294, Processing Time 0.025 seconds

A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table (내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2017
  • In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.

Study on Activate Methods for Digital Contents Service to Support Academic Courses in e-Learning (e-Learning 강의 지원을 위한 디지털콘텐츠 서비스 활성화 방안연구 - I 대학 교수.학생.도서관서비스를 중심으로 -)

  • Lee, Jong-Won;Go, Chan
    • Journal of Digital Convergence
    • /
    • v.8 no.2
    • /
    • pp.89-102
    • /
    • 2010
  • The present thesis aims to analyze in consideration of recent changes in teaching environment in the universities the commercial digital contents and e-learning courses provided by the libraries, and to propose the ways to encourage university library service needed under the current situation. A survey of professors and students upon the quality of commercial digital contents service provided by the libraries in I University was made to measure its influence upon e-learning courses. The quality of commercial digital contents service provided by libraries was measured through Digital Library Service Quality Index (which will be referred as DL-SQL Model from here), which is used as a model to examine the Digital Library Service, with partial adjustments of 4 levels (information system service, digital books service, customer service quality, and customer community service) and 7 components (search possibility, an exclusive organization and interface, accessibility, digital books, customer support service, personalized service, and customer community). Among the library services in regard to digital contents, "customer service" and "customer community service" were analyzed to have stronger influence upon e-learning teaching and studying than quality-based service for "information system" and "digital books". Consequently, it is concluded that customized information service provided by the library for the professors who teach e-learning courses and their students is more influential to supporting e-learning courses than quantity pushing service through purchasing commercial digital contents, upon which the direction of digital contents policy to provide library services for e-learning courses should be based.

  • PDF

Study on Extracting Filming Location Information in Movies Using OCR for Developing Customized Travel Content (맞춤형 여행 콘텐츠 개발을 위한 OCR 기법을 활용한 영화 속 촬영지 정보 추출 방안 제시)

  • Park, Eunbi;Shin, Yubin;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Purpose The atmosphere of respect for individual tastes that have spread throughout society has changed the consumption trend. As a result, the travel industry is also seeing customized travel as a new trend that reflects consumers' personal tastes. In particular, there is a growing interest in 'film-induced tourism', one of the areas of travel industry. We hope to satisfy the individual's motivation for traveling while watching movies with customized travel proposals, which we expect to be a catalyst for the continued development of the 'film-induced tourism industry'. Design/methodology/approach In this study, we implemented a methodology through 'OCR' of extracting and suggesting film location information that viewers want to visit. First, we extract a scene from a movie selected by a user by using 'OpenCV', a real-time image processing library. In addition, we detected the location of characters in the scene image by using 'EAST model', a deep learning-based text area detection model. The detected images are preprocessed by using 'OpenCV built-in function' to increase recognition accuracy. Finally, after converting characters in images into recognizable text using 'Tesseract', an optical character recognition engine, the 'Google Map API' returns actual location information. Significance This research is significant in that it provides personalized tourism content using fourth industrial technology, in addition to existing film tourism. This could be used in the development of film-induced tourism packages with travel agencies in the future. It also implies the possibility of being used for inflow from abroad as well as to abroad.

A Structured Methodology with Device Collaboration Diagram for Evaluating Context-Aware Systems (장비협업도를 활용한 상황인식 시스템에 대한 구조적 평가 방법론)

  • Kwon, Oh-Byung;Lee, Nam-Yeon
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2007
  • Nowadays the context-aware systems have been regarded as a promising opportunity to create differentiated e-marketplaces. Context-aware system aims to provide personalized services by understanding the user's current situation which is automatically acquired from the context data. This aim naturally leads us to a motivation to evaluate to what extent a system is context-aware. Even though lots of endeavors have stated about the level of context-aware system, a structured evaluation has been so far very rare. Hence, the purpose of this paper is to propose a two-phased methodology for assessing context-aware systems. In the first phase, we perform a requisite analysis to discriminate a context-aware system from general or context-based systems. Once an information system is recognized as context-aware system, then level of collaboration, mobility and embeddedness is derived to determine the level of context-aware system in the second phase. To do so, device collaboration diagram (DCD) is proposed to visualize the system architecture. Moreover, readiness and level of system are Jointly considered in the phase to provide a development strategy for each context-aware system development project. To show the feasibility of the idea proposed in this paper, legacy context-aware systems are actually analyzed and evaluated.

  • PDF

Changes in Consumption Life and Consumer Education in the Fourth Industrial Revolution (제4차 산업혁명 시대의 소비생활 변화와 소비자교육)

  • Jung, Joowon
    • Journal of Korean Home Economics Education Association
    • /
    • v.29 no.3
    • /
    • pp.89-104
    • /
    • 2017
  • Considering the advent of the Fourth Industrial Revolution, this study examines the changes and influences of intelligent information technology and the role of consumer education in the context of consumption life. The purpose of this study is to provide a theoretical foundation to effectively respond to the future consumption society as an independent consumer by enhancing the understanding of the Fourth Industrial Revolution in terms of consumption life. First, in terms of changes in the consumption paradigm in the Fourth Industrial Revolution, production and consumption are converged by being shared through a comprehensive connection platform in real time. Regarding the meaning of consumption, mental experience is being emphasized; moreover, usage and sharing, rather than ownership, are being highlighted. In terms of major changes in consumption life, the emergence of a more convenient smart consumption life and the possibility of personalized consumption optimized for individual demand are anticipated. Moreover, sustainable eco-friendly consumption is expected to increase further, and rapidly changing consumption trends will experience accelerated progress in consumer-centered changes. Next, the predicted problems in consumption life in the Fourth Industrial Revolution include unequal consumption due to intelligent information technology power center and the use and management of personal information data. Furthermore, ethical concerns related to the introduction of new technologies will become prominent, eventually resulting in issues concerning consumption satisfaction. To effectively respond to these new paradigm changes, consumer education should be value-centered. Ethical aspects of consumption should be considered, and consumption life should include trust and mutual cooperation. Furthermore, consumer education should facilitate creative convergence.

The Effect of Smart Learning User' Learning Motivation Factors on Education Achievement through Practical Value and Hedonic Value (스마트 러닝 이용자의 학습 동기요인이 실용적 가치와 헤도닉 가치를 통해 교육성과에 미치는 영향)

  • Mun, Jung Won;Kwon, Do soon;Kim, Seong Jun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • The appearance of education is also rapidly changing in social changes represented by social networks. And the development of information and communication technology is also having a widespread effect on the education field. In the era of untact caused by Covid-19, education through smart learning is having a greater effect on students as well as adult learners more quickly and broadly. In addition, smart learning is not just limited to learning content, but is developing into personalized, convergence, and intelligent. The purpose of this study is to identify the factors of ARCS motivation theory that can determine the learning motivation of smart learning users, and to empirically study the casual relationship between these factors on education achievement through practical value and hedonic value. Specifically, I would like to examine how the independent variables ARCS motivation factors (attention, relevance, confidence, and satisfaction) affect learners' education achievement through the parameters of practical value and hedonic value. To this end, a research model was presented that applied the main variables of attention, relevance, confidence, and satisfaction, which are four elements of ARCS motivation theory, a specific and systematic motivational strategy to induce and maintain learners' motivation. In order to empirically verify the research model of this study, a survey was carried out on learners with experience using smart learning. As a result of the study, first attention was found to have a positive effect on the hedonic value. Second, relevance was found to have a positive effect on the hedonic value. Third, it was found that confidence did not have a positive effect on the practical value and the hedonic value. Forth, satisfaction was found to have a positive effect on the practical value and the hedonic value. Fifth, practical value was found to have a positive effect on the education achievement. Sixth, hedonic value was found to have a positive effect on the education achievement. Through this, it can be seen that the intrinsic motivation of learners using smart learning affects the education achievement of users through intrinsic and extrinsic value. A variety of smart learning that combines advanced IT technologies such as AI and big data can contribute to improving learners' education achievement more effectively and efficiently. Furthermore, it can contribute a lot to social development.

Research on Case Analysis of Library E-learning Platforms: Focusing on Learning Contents and Functions (도서관 이러닝 플랫폼 사례분석 연구 - 학습 내용 및 기능을 중심으로 -)

  • SangEun, Cho;KyungMook, Oh
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.1
    • /
    • pp.209-238
    • /
    • 2023
  • This study aims to propose the main learning contents, functions and activation plans for building an e-learning platform for libraries through a literature review, case analysis and expert survey. Through the literature review, it was found that libraries must play a role in providing high-quality online education for users in the e-learning ecosystem. Based on the previous studies, a learning function analysis tool was developed for the analysis of the library's e-learning platform. Based on this, the learning contents, learning functions and characteristics of library e-learning platforms were analyzed, and expert surveys and interviews were conducted. As a results, the construction of a platform for effectively applying learning processes and technology is essential for the library's sustainable e-learning services. The contents that should be provided for characteristics of library education, reading guidance, information literacy instruction, library usage instruction, and the latest IT technologies. And The main learning functions include the ability to conduct video lectures and real-time classes among learning types, and learning activity support functions, a cloud platform support function and a personalized environment support function. Additionally, suggested re-education for library staff to improve their technical skills and the formation of an e-learning team.

Prompt engineering to improve the performance of teaching and learning materials Recommendation of Generative Artificial Intelligence

  • Soo-Hwan Lee;Ki-Sang Song
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.195-204
    • /
    • 2023
  • In this study, prompt engineering that improves prompts was explored to improve the performance of teaching and learning materials recommendations using generative artificial intelligence such as GPT and Stable Diffusion. Picture materials were used as the types of teaching and learning materials. To explore the impact of the prompt composition, a Zero-Shot prompt, a prompt containing learning target grade information, a prompt containing learning goals, and a prompt containing both learning target grades and learning goals were designed to collect responses. The collected responses were embedded using Sentence Transformers, dimensionalized to t-SNE, and visualized, and then the relationship between prompts and responses was explored. In addition, each response was clustered using the k-means clustering algorithm, then the adjacent value of the widest cluster was selected as a representative value, imaged using Stable Diffusion, and evaluated by 30 elementary school teachers according to the criteria for evaluating teaching and learning materials. Thirty teachers judged that three of the four picture materials recommended were of educational value, and two of them could be used for actual classes. The prompt that recommended the most valuable picture material appeared as a prompt containing both the target grade and the learning goal.

Factors Influencing Individual's Intention to Provide MyData: Focusing on the Moderating Effects of Individual Capabilities and Institutional Type (개인의 마이데이터 제공의도에 영향을 미치는 요인: 개인역량과 기관유형의 조절효과를 중심으로)

  • Dong Keun Park;Sung-Byung Yang;Sang-Hyeak Yoon
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.73-97
    • /
    • 2023
  • Recently, the MyData market has been growing as the importance of data and issues related to personal information protection have drawn much attention together. MyData refers to the concept of guaranteeing an individual's right to personal information and providing and utilizing one's data according to individual consent. MyData service providers can combine and analyze customer information to provide personalized services. In the early days, the MyData business was activated mainly by private companies and the financial industry, but recently, public institutions are also actively taking advantage of MyData. Meanwhile, the importance of an individual's intention to provide MyData for the success of MyData businesses continues to increase, but research related to this is lacking. Moreover, existing studies have been mainly conducted on individual benefits of MyData; there are not enough studies in which both public benefit and perceived risk factors are considered at the same time. In this regard, this study intends to derive factors affecting the intention to provide MyData based on the privacy calculus model, examine their influencing mechanism, and further verify the moderating effects of individual capabilities and institutional type. This study can find academic significance in that it expanded and demonstrated the privacy calculus model in the context of MyData providing intention. In addition, the results of this study are expected to offer practical guidelines for developing and managing new services in MyData businesses.

A Study on the Intention to Use of the AI-related Educational Content Recommendation System in the University Library: Focusing on the Perceptions of University Students and Librarians (대학도서관 인공지능 관련 교육콘텐츠 추천 시스템 사용의도에 관한 연구 - 대학생과 사서의 인식을 중심으로 -)

  • Kim, Seonghun;Park, Sion;Parkk, Jiwon;Oh, Youjin
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.1
    • /
    • pp.231-263
    • /
    • 2022
  • The understanding and capability to utilize artificial intelligence (AI) incorporated technology has become a required basic skillset for the people living in today's information age, and various members of the university have also increasingly become aware of the need for AI education. Amidst such shifting societal demands, both domestic and international university libraries have recognized the users' need for educational content centered on AI, but a user-centered service that aims to provide personalized recommendations of digital AI educational content is yet to become available. It is critical while the demand for AI education amongst university students is progressively growing that university libraries acquire a clear understanding of user intention towards an AI educational content recommender system and the potential factors contributing to its success. This study intended to ascertain the factors affecting acceptance of such system, using the Extended Technology Acceptance Model with added variables - innovativeness, self-efficacy, social influence, system quality and task-technology fit - in addition to perceived usefulness, perceived ease of use, and intention to use. Quantitative research was conducted via online research surveys for university students, and quantitative research was conducted through written interviews of university librarians. Results show that all groups, regardless of gender, year, or major, have the intention to use the AI-related Educational Content Recommendation System, with the task suitability factor being the most dominant variant to affect use intention. University librarians have also expressed agreement about the necessity of the recommendation system, and presented budget and content quality issues as realistic restrictions of the aforementioned system.