• Title/Summary/Keyword: Permeate Flux

Search Result 305, Processing Time 0.025 seconds

A Study on the Validity of the Metal Filter Application in MBR Process (MBR 시스템에서의 금속필터 적용타당성 연구)

  • Lee, Min Soo;Lee, Kang Hoon;Lee, Yong Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • In this study, a method for stabilizing treated water was conducted while maintaining high flux using a metal flat membrane module made of stainless steel. This module had a pore size of 13 ㎛, so it was possible to operate at a high flux from 60 LMH to 100 LMH. However, although SS leaked about 30~50 ppm during initial operation, aggregation was possible because SS acted as aggregation nucleus. While polymer membrane permeate does not have aggregation nucleus, so coagulation is possible but not flocculation. Typically clay or bentonite, which is used as aggregation nucleus, is additionally administered. In this study, the total phosphorus treatment and the quality of the treated water were to promote stability because flocculation was achieved only with SS leakage without the need for such a aggregation nucleus. Finally, the feasibility of operating a metal membrane filter capable of high flux in stable treated water to be applied to the MBR system.

Continuous Hydrolysis of Cod Skin Gelatin in an Ultrafiltration Reactor (한외여과막 반응기를 이용한 어피젤라틴의 연속적 가수분해)

  • Kim, Se-Kwon;Byun, Hee-Guk;Cheryan,Munir
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.309-319
    • /
    • 1991
  • A continuous stirred tank membrane reactor(CSTMR ) was developed and optimized for the production of cod skin gelatin hydrolyzates using endo-protease Alcalase. A experimental design methodology was used to optimize the four performance variables: enzyme concentration, substrate concentration, permeate flux and reactor volume. All four variables studied had an effect on substrate conversion, with enzyme and substrate concentrations being predominant. Conversion increased with the increase in enzyme concentration, with the decrease in substrate concentration, at high volumes and low flux. A strong interaction was observed between enzyme and substrate concentrations and smaller interactions between enzyme and flux and substrate and flux. The optimum operating conditions for the CSTMR process for an initial substrate concentration for 10% were $50^{\circ}C$, pH 8, flux 7.3ml/min, residence time 82 min, and Alcalase to substrate ratio 0.02(w/w). A gradual decay in reactor activity during 8 hrs was 2.1% conversion/hr. Enzyme leakage through the 10, 000 MWCO membrane was 16% at $50^{\circ}C$ and 12% at $35^{\circ}C$, 6hrs. However, there was no apparent correlation between enayme leakage and substrate conversion. The Km value for the CSTMR was 20 times higher than the batch reactor. The productivity(expressed as mg product/mg enzyme) of the CSTMR was more than six fold higher than the batch at $50^{\circ}C$. The hydrolyzate was non-bitter.

  • PDF

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Hydrolysis of Fish Protein Concentration in an Ultrafiltration Membrane Reactor (한외여과막 반응기를 이용한 FPC의 가수분해)

  • 최정호;변희국;김세권
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • In order to improve functional properties, enzymatic hydrolysis of FPC (fish protein concentration) was achieved in ultrafiltration membrane reactor (MWCO 5,000). First, insoluble FPC was hydrolyzed by pepsin in batch reactor to decrease the fouling in ultrafiltration membrane reactor, and second hydrolysis was achieved by pronase E in ultrafiltration membrane reactor The optimum operating conditions in batch reactor using pepsin were at temperature 45$^{\circ}C$, pH 2.0 and the ratio of substrate to pepsin, 150 (w/w) After operating for 5hrs under optimum conditions, 89% of total amount of initial FPC was hydrolyzed. The rate constants, $K_{m}$ and V$_{max}$, were 1.25% and 0.89 mg/$m\ell$/min, respectively, and substrate inhibition was occured above 1.5%. The ultrafiltration membrane reactor was operated with recycling rate of 474 $m\ell$/min and transmembrane pressure of 15 psi. The permeate flux was increased by temperature, transmembrane pressure, but the permeate flux was fixed by pH. The optimum ratio of substrate to pronase E was 200(w/w) and the productivity of ultrafiltration membarane reactor was 702 mg/mg -enzyme, that of batch reactor was 51mg/mg-enzyme. Molecular weight distributions tot first and second hydrolysates were from 2,500 Da to 20,000 Da and from 700 Da to 10,000 Da, respectivelyly.

  • PDF

The Optimization of Removal Process of Humic Acid by Polysulfone Hollow-fiber Membrane (폴리설폰 중공사막에 의한 부식산 제거공정의 최적화)

  • Song, Kun-Ho;Lee, Kwang-Rae;Lee, Chan-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1273-1284
    • /
    • 2000
  • In this study, ultrafiltration was performed to remove humic acid from aqueous solution. Since the effects of system variables on the ultrafiltration were tangled with non-linearly. Response Surface Methodology(RSM) was used to know optimum conditions of ultrafiltration process, relations among system variables, and the effects of system variables such as pressure difference across the membrane, concentration of humic acid, and feed flow rates. As concentrations of humic acid were 10ppm, 40ppm, and 70ppm in feed stream, permeation fluxes were 2.56, 2.27, and $2.10({\times}10^{-2}cc/cm^2{\cdot}min)$ respectively ; in other words, permeation fluxes of 10ppm, 40ppm and 70ppm feed concentration decreased by 17.7%, 26.7% and 32.2% of pure water permeation flux respectively. Concentration of humic acid in permeate side were 0.5ppm, 1.2 ppm, and 2.1ppm respectively. When pressure difference(${\Delta}P$) increased from 1atm to 2atm and 3atm, permeation fluxes of 40ppm feed concentration increased by 66% and 152% of permeation rate at 1atm respectively. However, concentrations of humic acid in permeate side increased from 0.5ppm to 1.5ppm and 3.5ppm. RSM showed that the optimum condition of system variables is 38.5~40ppm of humic acid concentration in feed stream, 30~30.7cc/min of feed flow rate, and 2atm of pressure difference.

  • PDF

Value Addition of Jujube Wine using Microfiltration and Ultrafiltration (미세여과와 한외여과를 이용한 대추술의 고품질화)

  • Kang, Hyun-Ah;Chang, Kyu-Seob;Min, Young-Kyoo;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1146-1151
    • /
    • 1998
  • To prevent deterioration of the jujube wine quality by using heat sterilization while commercial production, ultrafiltration and microfiltration were applied. The permeate flux and physicochemical properties of jujube wine determined by MF and UF membrane ($0.2\;{\mu}m$ pore size and 50 K dalton cut off) were investigated. The permeate flux increasing caused the increased operating pressure. The Hunter L value of jujube wine treated MF and UF was increased and that of b value was decreased. The turbidity of jujube wine treated MF and UF was largely decreased. And the values of pH, ethanol, total acid and soluble solid were decreased or were at the same level comparing with untreated jujube wine. Retention percentage of sugar and organic acid was more than 80% and was not influenced by operating pressure. Results of sensory evaluation indicated that the color of UF was superior to un-treatment and commercial ones. And the flavor and taste were not significantly different with untreated jujube wine. The quality deterioration of commercial jujube wine could be improved by MF and UF. According to the sensory evaluation, there was also not difference between MF and UF for preference test. Therefore, the quality of jujube wine could be improved by MF having better separation yield efficiency than UF.

  • PDF

The Treatment of Heavy Metal Hydroxides by Crossflow-Microfiltration (정밀여과에 의한 중금속수산화물의 처리)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.151-165
    • /
    • 2002
  • In the treatment of the wastewater containing metals($Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Cr^{3+}$) by using batch precipitation and flocculation followed by membrane filtration, permeate flux and removal efficiency were investigated according to by the effect of pH and coagulants, and the type of membranes used and pore size. It was found that it is most effective to use $0.45{\mu}m$-polysulfone membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of copper containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of zinc containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case of nickel containing wastewater, $0.2{\mu}m$ membrane and coagulant at the conditions of the pH of 8.0~8.5 for the case of chromic containing wastewater, and $0.2{\mu}m{\sim}0.45{\mu}m$ membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case mixture wastewater. The permeate flux could higher as to be used coagulants except for the case of copper containing wastewater.

  • PDF

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

A Study on the Treatment of Wastewater from Ion Removal Process for Purifying Electrocoat Paint in the Bath by Use of Reverse Osmosis (역삼투압을 이용한 전착도료 정제공정폐수처리에 관한 연구)

  • 김진성
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • To treat effectively EDIR (electrodeposition ion removal) wastewater in terms of CO$_{Mn}$ 1,500~2,000 ppm generated from aluminum painting process, a RO (reverse osmosis) process was designed and installed to recover and reuse the concentrated solvent sent back to the electrocodeposition tank while the permeate reused as rinse water. A RO system in which three polyamide-spiral wound modules ($102\Phi \times 1,016L$ mm) connnected in series had been running to treat 20 m$^3$ in waste volume in 3 days batch operation at the condition of system recovery of 30 %, applied pressure 11.5 $kg_f/cm^2$ and room temperature. During 42 hours continuous operation leading to 5-fold decrease in waste volume, nearly constant permeation flux of 390 l/m$^2$-hr was maintained and the permeate with average CO$_{Mn}$, 300 ppm was obtained which could be used for washing the remaining paint solution in ion-exchange tower instead of demineralized water. Also COD$_{Mn}$ rejection as a function of running time was observed to be in the range of 78~87 % and the observed solvent rejections for ethyl cellusolve, buthyl cellusolve and n-butanol were 79 %, 87 % and 70 %, respectively.

  • PDF

Oxygen Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) Membranes under Different Condition of Feed Side and Permeate Side (공급 측과 투과 측 조건에 따른 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) 관형 분리막의 산소투과 특성)

  • Kim, Jong-Pyo;Park, Jung-Hoon;Lee, Yong-Taek;Choi, Young-Jong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • Dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) membranes were prepared by extrusion technique. The phase structure of the $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Relative density of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane was 94.10%. Oxygen permeation was measured at difference operating condition of feed side and permeate side in the temperature range from 700 to $950^{\circ}C$. The oxygen permeation flux of dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane reached maximum 1.37 mL/$min{\cdot}cm^2$ at $900^{\circ}C$ exposed to ambient air (feed side) and vacuum pump (permeate side).