미세여과와 화쇄여과를 이용한 대추슬의 고품질화

강현아·장규성·민용규*·최용희**
충남대학교 식품공학과, *충북대학교 식품공학과, **경북대학교 식품공학과

Value Addition of Jujube Wine using Microfiltration and Ultrafiltration

Hyun-Ah Kang, Kyu-Seob Chang, Young-Kyoo Min* and Yong-Hee Choi**
Department of Food Science and Technology, Chungnam National University
*Department of Food Science and Technology, Chungbuk National University
**Department of Food Science and Technology, Kyungbok National University

Abstract

To prevent deterioration of the jujube wine quality by using heat sterilization while commercial production, ultrafiltration and microfiltration were applied. The permeate flux and physiochemical properties of jujube wine determined by MF and UF membrane (0.2 μm pore size and 50 k dalton cut off) were investigated. The permeate flux increasing caused the increased operating pressure. The Hunter L value of jujube wine treated MF and UF was increased and that of b value was decreased. The turbidity of jujube wine treated MF and UF was largely decreased. And the values of pH, ethanol, total acid and soluble solid were decreased or were at the same level comparing with untreated jujube wine. Retention percentage of sugar and organic acid was more than 80% and was not influenced by operating pressure. Results of sensory evaluation indicated that the color of UF was superior to un-treatment and commercial ones. And the flavor and taste were not significantly different with untreated jujube wine. The quality deterioration of commercial jujube wine could be improved by MF and UF. According to the sensory evaluation, there was also not difference between MF and UF for preference test. Therefore, the quality of jujube wine could be improved by MF having better separation yield efficiency than UF.

Key words : jujube wine, microfiltration, ultrafiltration

서 론

대추슬은 대추액과 씨를 원료로 발효시킨 갈색빛 술로, 충주지역의 민속주로 잘 알려져 있다. 대추슬의 제조공정은 크게 발효, 여과, 살균, 포장공정으로 구분할 수 있는데, 여과와 살균공정 중에 품질이 저하되어 사탕가치가 감소되는 문제점이 있는 때문이다. 이 철판 등은 약취의 열처리 살균시에 품질저하의 원인 이 화학적 및 오미의 발현을 보고하고 있다. 이와같 이 대추슬을 비롯하여 많은 민속주의 살균에 쓰이고 있는 가열처리 방법은 저장성을 향상시키고 처리가 간편하다는 장점이 있어 일반적으로 식품산업에서 많이 사용되고 있으나, 식품의 품미성분, 조직분, 색 및 영양성분 등에 좋지 않은 영향을 미치므로 고유의 품질을 최대한 보존하기 위한 비열처리 공정에 관심 이 증가하고 있다. 현재 식품산업에서 열처리 방법인 새로운 대안책으로 관심을 모으고 있는 기술중 하나인 막분리 기술 중 미세여과와 화쇄여과법은 시료의 청정화, 배제용질의 농축, 용질의 분획화를 주목적으로 과일주스 및 화인 등의 청정, 품질 유지 성분의 회수, 효소의 정체 등 여러 분야에 응용되고 있다.

따라서, 본 연구에서는 열처리 공정없이 굽혀 또는 품질에 영향을 주는 불필요한 물질을 제거할 수 있는 미세여과 공정과 화쇄여과법을 도입하여 두막분리 공정을 거친 대추슬의 품질을 비교함으로써 대추슬의 품질을 높이고자 하였다. 막의 pore size가 다른 2개의 종공시험관을 사용하여 시스템을 구성하고, 막의 pore size와 각 공정변수가 두막플러스에 미치는 영향을 검토하였다. 또한 두께의 성분을 비교 분석하고, 판능검사를 실시하였기에 보고하고자 한다.

Corresponding author: Kyu-Seob Chang, Department of Food Science and Technology, Chungnam National University, Taejon 305-764, Korea
재료 및 방법

재료

본 실험에 사용된 무처리 대추술은 상행\(^{10}\)에 따라 제조한 후 살균을 하지 않은 발효 술을 사용하였고, 시판 대추술은 "청주대추술"에서 구입하여 사용하였다.

한의요법 시스템

본 실험에 사용된 마크편 시스템은 Fig. 1과 같이 구성하였다. 사용된 마크는 polysulfone재질의 증증사형박 (MICROGON Inc., USA)으로 맥 공정크기가 0.2 μm 와 50K dalton cut-off 인 것을 장치하여 사용하였고, 대추술이 module로 운송되기전에 prefilter (5 μm와 20 μm)를 통하게 하여 맥에 접촉하성을 최소화하였다. 각의 크기 및 특성은 Table 1과 같다.

성분분석

대추술의 색은 색차계(Color techno system JC801, Japan)를 사용하여 Hunter L, a, b 값을 측정하고 무처리 대추술을 기준으로 ΔEab 값을 구하였다. pH는 pH meter (Hanna Instrument)로, 봄도는 분광광도계 (Spectronic genesys 5, USA)를 이용하여 600 nm에서 흡광도를 측정하였으며, 가용성 고형물(Brix)은 Abbe 굴절계(Atago, Japan)로 측정하였다. 음탕을 향상

관능검사

관능검사은 충남대학교 식품공학과 대학원생중
차이식별 검사를 위한 기본훈련을 마친 9명의 평가요
원을 대상으로 Multiple comparisons test를 실시하였
으며, 이때 무처리 대추술을 대조군으로 하였다. 또한
Ranking test를 실시하여 이들의 선호도를 조사하였고
재검결과는 SAS 프로그램을 사용하여 ANOVA 검정
을 실시하였다\(^{10}\).

결과 및 고찰

투과팔러스의 변화

막 본리 시스템을 이용하여 대추술을 여과하에 시
간과 압력이 투과팔러스에 미치는 영향을 살펴보았
다. 대추술의 온도를 30°C로 조정하고 맥 횡단압력을
1.0 Kg/cm\(^2\), 1.5 Kg/cm\(^2\), 2.0 Kg/cm\(^2\)로 설정하여 대추술을 여과하에 각 공정압력이 투과팔러스에 미치는
영향을 Fig. 2에 나타내었다. 공정압력이 증가하에 거
의 직선적인 증가 경향을 보였고, 그 증가폭은 맥의

<table>
<thead>
<tr>
<th>Table 1. Specification of the membrane module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
포즈 사이즈가 큰 막에서 더 크게 나타났다. Fig. 3은 대추술의 온도를 30℃로 하여 여과시에 시간에 따른 루프플렉스의 변화를 살펴본 것이다. 적용압력에 관계없이 초기 10분 사이에 루프플렉스는 급속히 증가하였고, 이 시간에 암력에 따른 루프플렉스의 차이가 점점 감소하여 10분 경과時には 암력에 따른 루프플렉스의 차이는 크지 않았다. 이러한 루프플렉스의 저

성분의 변화
막 분리 후 대추술의 주질 변화를 살펴보기 위하여 pH, 에탄올, 콜산, 가용성 고형물 등을 분석한 결과는 Table 2와 같다. 대추술의 막분리시 대추술의 성분은 감가약간 감소하고, 막의 포즈 사이즈가 작거나 한의류 과목에서 손실되는 양이 더 많은 것으로 나타났다. 한편, 양조주의 경우 혼탁물질의 생성으로 청정화에 대한 많은 연구가 행해지고 있는데, 김효선 등은 동물 암주의 청정화 방법으로 단백효소에 의한 방법과 한의류에 의한 방법을 검토한 결과 한의류 방법은 원래의 암주보다 약 91% 개선된 청정효과를 보였다고 보고하고 있다. 대추술의 막도 Table 2에서 보는 바와 같이 미세한 과사에 무처리술의 막도가 1.047로 efficiently하게 크게 낮아졌으며 한의류술에서는 0.022-0.023으로 현저히 낮아져 청정효과가 크게 기여함을 알 수 있었다. 또한 막도 감소를 제외한 기타 유용성분의 함량에 있어서는 막분리시 적용압력에 큰 영향을 받지 않는 것으로 나타났다.

색도
액상식품의 색도는 소비자의 구매요구를 좌우하면

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Pressure (Kgf/cm²)</th>
<th>pH</th>
<th>Turbidity (660 nm)</th>
<th>Ethanol (%)</th>
<th>Total Soluble solid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-treated</td>
<td>4.39</td>
<td>1.047</td>
<td>14</td>
<td>0.27</td>
<td>14.4</td>
</tr>
<tr>
<td>MF (0.2 μm)</td>
<td>1.0</td>
<td>4.36</td>
<td>0.068</td>
<td>13</td>
<td>0.27</td>
</tr>
<tr>
<td>MF (50 K)</td>
<td>2.0</td>
<td>4.36</td>
<td>0.077</td>
<td>13</td>
<td>0.27</td>
</tr>
<tr>
<td>UF (0.022)</td>
<td>1.0</td>
<td>4.36</td>
<td>0.022</td>
<td>13</td>
<td>0.27</td>
</tr>
<tr>
<td>UF (50 K)</td>
<td>2.0</td>
<td>4.34</td>
<td>0.023</td>
<td>13</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Fig. 2. Effects of transmembrane pressure on the permeate flux of jujube wine using hollow-fiber MF and UF system. (●: 0.2 μm, ○: 50 K)

Fig. 3. Effects of time on the permeate flux of jujube wine using hollow-fiber MF and UF system. (●: 1.0 Kgf/cm²-0.2 μm, ■: 1.5 Kgf/cm²-0.2 μm, ▲: 2.0 Kgf/cm²-0.2 μm, ○: 1.0 Kgf/cm²-50 K, ○: 1.5 Kgf/cm²-50 K, ▲: 2.0 Kgf/cm²-50 K)
로 매우 중요한 성질이라 할 수 있다. 따라서 대추술은 한의여과에서 색도의 변화를 살펴보았다(Table 3). 미세여과에서 Hunter L값은 79.25에서 85.16-86.81로 현저히 높아졌으며 이현상은 한의여과 공정을 거치면서 더욱 드러나는 것으로 나타났다. a값(적색도)은 미세여과에서는 큰 변화가 없었으나 한의여과에서 크게 높아져 0.66-0.78의 범위로 색이 차이를 보이게 되었음을 알 수 있었다. 또한 b값(황색도)은 전체적으로 미세여과와 한의여과에서 큰 차이가 없었으나 membrane의 pore size에 의해서는 큰 영향을 받지 않는 것으로 나타났다. 이러한 색의 변화는 발효액에 있는 발효부산물 및 세균의 세균지기 등이 세기하였기 때문이라고 생각된다. 또한 무처리술과의 색차인 Eab는 미세여과에서 11이상, 한의여과 후에는 15이상의 큰 차이를 보여 유안으로도 차이를 인지할 수 있었다.

한편, Baumann 등은 membrane pore size가 작을수록 주소의 색이 더 빛나게 되었고, Padilla 등은 100 K와 500 K membrane은 Hunter L값의 차이가 없었고 100 K, 50 K, 10 K membrane은 pore size가 작을수록 Hunter L값이 증가하였다고 보고하였는데, 이는 본 실험의 결과와 일치하는 결과로 판단된다.

유리담
식품을 존재하는 유리담은 관능적 특성에 중요한 영향을 미치므로 대추술을 막벌리에 유리담의 변화를 살펴보았다(Table 4). 이현상은 대추술은 유과와 삼균 공정에서 유리담이 많이 손실되며 glucose의 경우 약 69%가 감소하였다고 보고하고 있다. 그러나 미세여과와 한의여과 시스템을 이용하여 대추술을 막벌리에 유리담은 80%이상 환수되어 기존의 유과와 삼균방법에 비하여 높은 환수율을 보여 주었다. 한편, fructose는 미세여과와 한의여과 사이에 차이가 없었으나 glucos와 sucrose는 미세여과의 이전의 유과와 비하여 한의여과에서 환수율이 약간 낮게 나타났다. 또한 횡단압력의 큰 영향을 미치지 않는 것으로 나타났다.

유기산
대추술에는 citrate, malate, succinate, lactate, acetate 등의 유기산이 함유되어 있는데, 여과에 의해 가장 많이 손실되는 산은 acetate이었으며, 삼균시에 많이 손실되는 산은 citrate와 malate이었다고 보고되고 있다. 따라서, 막벌리 공정이 유기산의 함량에 미치는 영향을 살펴보았다. Table 5에서 보는 바와 같이 막벌리 공정을 거쳐 대추술은 유기산의 함량에는 큰 변화가 없는 것으로 나타나 기존의 여과와 삼균방법에 비하여 대추술 고유의 품질을 유지할 수 있는 공정임을 알 수 있었다. 한편, 이러한 결과는 김효선 등(5)의 종합학습을 한의여과시에 효과처리보다 당과 산과 같은 함미

| Table 3. Hunter L, a, b values of jujube wine using hollow-fiber MF and UF system |
|---|---|---|---|---|
| Membrane pore size | Pressure (Kgf/cm²) | Hunter L | a | b | ΔEab |
| un-treated | 79.25 | 3.62 | 54.92 | 0 |
| MF (0.2 μm) | 1.0 | 85.16 | 3.00 | 44.39 | 11.80 |
| | 1.5 | 86.81 | 3.39 | 45.61 | 11.74 |
| | 2.0 | 86.20 | 3.29 | 45.67 | 11.57 |
| UF (50K) | 1.0 | 91.79 | 0.68 | 45.73 | 15.63 |
| | 1.5 | 91.70 | 0.78 | 45.99 | 15.40 |
| | 2.0 | 91.79 | 0.66 | 44.99 | 16.27 |

| Table 4. Sugar contents of jujube wine using hollow-fiber MF and UF system |
|---|---|---|---|---|
| Membrane pore size | Pressure (Kgf/cm²) | Fructose (mg/ml) | Glucose (mg/ml) | Sucrose (mg/ml) |
| un-treated | 2.02 | 63.85 | 10.69 |
| MF (0.2 μm) | 1.0 | 1.63 | 55.04 | 8.80 |
| | 1.5 | 1.68 | 54.72 | 8.89 |
| | 2.0 | 1.64 | 54.97 | 8.93 |
| UF (50 K) | 1.0 | 1.62 | 51.27 | 8.39 |
| | 1.5 | 1.63 | 51.85 | 8.46 |
| | 2.0 | 1.63 | 51.59 | 8.46 |

| Table 5. Organic acid contents of jujube wine using hollow-fiber MF and UF system |
|---|---|---|---|---|---|---|
| Membrane pore size | Pressure (Kgf/cm²) | citrate (mg/mL) | malate (mg/mL) | lactate (mg/mL) | acetate (mg/mL) | succinate (mg/mL) |
| un-treated | 1.0 | 0.27 | 0.26 | 0.98 | 0.41 | 0.39 |
| MF (0.2 μm) | 1.5 | 0.24 | 0.22 | 0.82 | 0.34 | 0.33 |
| | 2.0 | 0.25 | 0.23 | 0.84 | 0.33 | 0.35 |
| UF (50 K) | 1.0 | 0.23 | 0.21 | 0.82 | 0.33 | 0.34 |
| | 1.5 | 0.23 | 0.21 | 0.80 | 0.33 | 0.34 |
| | 2.0 | 0.24 | 0.22 | 0.82 | 0.34 | 0.35 |
Table 6. Effects of membrane separation on sensory characteristics of jujube wine

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Means (commercial product)</th>
<th>MF (0.2 µm)</th>
<th>UF (50 K)</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>turbidity</td>
<td>3.667*</td>
<td>2.000*</td>
<td>1.000*</td>
<td>0.3972</td>
</tr>
<tr>
<td>lightness</td>
<td>7.889*</td>
<td>4.333*</td>
<td>2.333*</td>
<td>1.0674</td>
</tr>
<tr>
<td>chroma</td>
<td>5.778*</td>
<td>2.333*</td>
<td>1.778*</td>
<td>1.6025</td>
</tr>
<tr>
<td>sweet flavor</td>
<td>4.778*</td>
<td>4.667*</td>
<td>4.556*</td>
<td>1.6350</td>
</tr>
<tr>
<td>sour flavor</td>
<td>5.889*</td>
<td>5.333*</td>
<td>4.778*</td>
<td>1.7872</td>
</tr>
<tr>
<td>burnt flavor</td>
<td>8.000*</td>
<td>5.222*</td>
<td>3.667*</td>
<td>0.8782</td>
</tr>
<tr>
<td>sweet taste</td>
<td>4.444*</td>
<td>5.000*</td>
<td>5.444*</td>
<td>1.8465</td>
</tr>
<tr>
<td>sour taste</td>
<td>6.778*</td>
<td>5.222*</td>
<td>4.333*</td>
<td>1.5525</td>
</tr>
<tr>
<td>cooling taste</td>
<td>6.444*</td>
<td>4.778*</td>
<td>4.222*</td>
<td>1.6296</td>
</tr>
</tbody>
</table>

Means with the same letter are not significantly different.
Mean value from 9 replications.
**Means in the same row not followed by the same letter are significantly different (p<0.05).

성분의 손실이 적었다는 보고와 같은 결과이다.

관능검사
여과와 살균공정을 거치지 않은 무처리 대추술과
시판 대추술 그리고 0.2 µm의 미세여과막과 함께분자
량(molecular weight cut-off) 50 K dalton인 한외여과
막을 사용하여 여과 대추술의 관능검사를 실시한
결과는 Table 6과 7에 나타내었다. Table 6은 무처리
시판술과 막분리 공정을 거친 슬을 무처리술과 비교
하여 차이의 정도를 측정하여 나타난 결과이다. 관능
검사 결과 대추술의 막도는 무처리 대추술에 비하여
두드 맞으나 시판술과 미세여과 및 한외여과두 갇기
다른 그룹으로 구분되었으며, 이는 흡광도로 살펴본
막도와 같은 결과임을 알 수 있었다. 또한 영도는 시판
술이 무처리술보다 두드 맞고 한외여과막 처리이 가장
앞아 이의 결과는 기계적 측정치인 L값의 측정 결과와
일치하였다. 제도는 두 그룹으로 구분되어 시판술과
막분리 공정을 거친 슬 사이에 차이가 인정되며, 미세
여과와 한외여과술 간에는 차이를 느끼지 못하여 기계
적 측정치인 a값과 b값의 차이를 실제 육안으로는 구
분하지 못하는 것으로 나타났다. 단순화 신비, 단단한
처리방법에 따른 차이를 느끼지 못하나, 화두나의 경
우 시판술에서 강하게 나타나 타추에서 가열처리시
화두나가 증가하면서 품질은 저하되었는 보고와 일
치하였다. 신맛 및 화초맛은 막 여과사에 시판술과 차
이를 느끼며 시판술보다는 더 적은 값을 보였다.

대추술을 막분리시에 선탕도를 살펴보고자 무처리
술, 시판술, 미세여과술(0.2 µm)과 한외여과술(50 K
dalton cut-off)의 선탕도를 조사하여 Table 7에 나타내
었다. 설탕 막분리로서 높은 값을 보여 기존의 방법보
다 선탕도가 좋으며, 미세여과 공정과 한외여과 공정
을 거친 슬건의 차이는 인지하지 못하는 것으로 나타
나, 대추술의 설탕 맑고 밝은 슬을 더 선호함을 알 수
있었다. 또한 맑고 향은 무처리술, 미세여과술 및 한외
여과술 사이에 구분이 되지 않으며, 시판술과는 구분
이 되었다. 이는 관능적 특성에 중요한 영향을 미치는
유리당과 유기산 및 기타성분의 감소량이 많은 시판
술은 다른 그룹으로 구분되나, 감소량이 적은 미세여
과와 한외여과 술은 무처리술과 같은 그룹으로 구분
되어 막분리 공정을 거친 슬은 대추술 고유의 맛과 향
이 유지될 수 있음을 보일 수 있었다. 또한 대추술의 관
능적 품질은 여과공정을 거치면서 향상되나, 살균공
정에 의해 저하된다는 보고7를 고려하여 볼 때, 막분리
기술의 적용은 기존의 가열살균 방법에 비하여 관능
적 품질을 개선시킬 수 있음을 알 수 있었다. 한편, 미세여과와 한외여과 술의 선탕도는 같은 그룹으로
구분되어 차이를 인지하지 못하는 것으로 나타났으므
로 한외여과 방법에 비하여 분리효율이 우수한 미세
여과 방법에 의하여 대추술을 막분리시에 기존의 방
misea으로 인한 떨어짐을 이용한 대추유의 고포질화

법에 비하여 대추유의 품질을 크게 개선할 수 있으며 바람직한 공정이 될 수 있을 것으로 본다.

요 약

청주지방의 민속주인 대추술은 제조과정 중 고유한 대추술의 풍미의 손실로 인한 상품가치가 감소되는 문제점이 있다. 특히 가열시간 공정에서의 성질적 블 개선하고자 미세유과와 한의약 및 시스템을 적용하여 다음과 같은 결과를 얻었다. 0.2 µm와 50K dalton의 hollow-fiber module을 사용하여 대추술을 여과시킨 후 불과스스의 변화는 초기 10분 경과 2시간 뒤에서 급속히 저하되었으며, 공정적력이 높음수록 투과유속이 증가하였다. 각 투과한 대추술의 색은 L값이 증가하고 b값이 감소하여 밝고 어둡게되었으며, 탁도는 크게 낮아져 청정되었다. 또한 pH, 알코올, 콩나 및 당도는 감거나 약간 낮아졌으며, 유기산과 유리당은 80%이상 회수되었다. 또한 이들 성분은 전용염액에는 큰 영향을 미치지 않았다. 간농검사 결과 대추술을 미세유과와 한의약과 사용한 대추술은 향미가 좋았고, 산미도 적절한 모양으로 나타났으며, 맛과 향은 시판재료에서 강하게 느끼던 화학적 변화가 적고 무처리 방식으로 비슷한 맛과 향을 보여줘 미세유과와 한의약과 재배인 경우와 가열공법에 비하여 관능적 품질을 개선시킬 수 있음을 보여주었다. 또한 성분도 조사한 간농검사 결과 미세유과와 한의약과 사용한 대추술은 같은 그룹으로 구분되어 차이가 없으므로 처리 효율이 좋은 미세유과 및 금속으로도 대추술의 품질을 크게 개선시킬 수 있음을 알 수 있었다.

감사의 글

본 연구는 한국과학기술재단의 박사학위연구지원에 의한 연구결과로써 이에 감사드립니다.

문헌

1. 이만규: 대추술의 제조공정과 가열조건에 따른 품질의 미치는 영향, 충북대학교 석사학위 논문(1997)
2. 이철호, 이현벽, 김지용, 김기명: 박주의 관능적 품질요소와 이들의 허무리에의한 변화, 한국식품학회지, 4, 405 (1989)
3. 범유량: 신품리 공정의 식품공업의 응용, 식품과학, 20(2), 4-10 (1989)
5. 대한농수산공업협회: 한국주점공업편람(1975)

(1998년 6월 4일 접수)