• 제목/요약/키워드: Periodic Solution

검색결과 388건 처리시간 0.022초

주기적인 원형 2D-격자의 회절에 대한 모드 전송선로 이론 (Modal Transmission-Line Theory for Optical Diffraction of Periodic Circular 2D-Grating)

  • 호광춘
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.247-252
    • /
    • 2019
  • 다층 주기 구조에 의한 광 신호의 회절 특성은 기본 격자구조와 연계된 Fourier 확장을 사용하여 2D 공간에서 공식화 된다. 그때 각 층에서의 필드들은 특성 모드에 의하여 표현되며, 완전한 해는 적절한 경계 값 문제에 의존하는 모드 전송선로이론(MTLT)을 사용하여 정확하게 얻을 수 있다. 이러한 해석법은 일반적으로 다층 구조에 평행 또는 수직 방향에 따라 광학 특성을 갖는 임의의 형태의 유전체 성분을 포함하는 모든 주기적 격자들을 처리할 수 있다. 본 논문은 간단한 주기적인 원형 2D-구조에 대하여 과거에 보고된 데이터와 비교하여 현 해석법을 설명하였다. 또한 제시한 해석법은 가능한 표준 형태와 높은 유전율을 가지는 복수의 주기적인 영역을 포함하는 매우 복잡한 구조들에 대하여 쉽게 적용할 수 있다.

ON POSITIVE SOLUTIONS OF A RECIPROCAL DIFFERENCE EQUATION WITH MINIMUM

  • QINAR CENGIZ;STEVIC STEVO;YALQINKAYA IBRAHIM
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper we consider positive solutions of the following difference equation $$x_{n+l}\;=\;min[{\frac{A}{x_{n}},{\frac{B}{x_{n-2}}}],\;A,B\;>\;0$$. We prove that every positive solution is eventually periodic. Also, we present here some results concerning positive solutions of the difference equation $$x_{n+l}\;=\;min[{\frac{A}{x_{n}x_{n-1}{\cdots}x_{n-k}},{\frac{B}{x_{n-(k+2)}{\cdots}x_{n-(2k+2)}}],\;A,B\;>\;0$$.

Natural vibration analysis of diagonal networks

  • Chai, W.S.;Li, Y.;Chan, H.C.
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.517-527
    • /
    • 1998
  • This paper describes an exact method of analysis for natural vibration of diagonal networks by considering an equivalent cyclic periodic structure and adopting the double U-transformation technique. Both a lumped mass system and a distributed mass system are considered to investigate the diagonal networks. The exact solution for the frequency equations and the natural modes of the networks can be derived. As numerical examples, square diagonal cable networks with different meshes are worked out.

MULTIPLE SOLUTIONS FOR A CLASS OF THE SYSTEMS OF THE CRITICAL GROWTH SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.389-402
    • /
    • 2008
  • We show the existence of at least two solutions for a class of systems of the critical growth nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We first show that the system has a positive solution under suitable conditions, and next show that the system has another solution under the same conditions by the linking arguments.

  • PDF

Propagation Speed of Torsional Waves in a Circular Rod with Harmonically Varying Material Properties

  • Kim, Jin-Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권1E호
    • /
    • pp.43-47
    • /
    • 2000
  • The paper describes a theoretical study on the speed of torsional elastic waves propagating in a circular rod whose material properties vary periodically as harmonic functions of the axial coordinate. An approximate solution for the phase speed has been obtained by using the perturbation technique for sinusoidal modulation of small amplitude. This solution shows that the wave speed in the nonuniform rod is dependent on the wave frequency as well as the periodic variation of the material properties. It implies that the torsional waves considered in this paper are dispersive even in the fundamental mode.

  • PDF

DYNAMICAL BIFURCATION OF THE ONE-DIMENSIONAL CONVECTIVE CAHN-HILLIARD EQUATION

  • Choi, Yuncherl
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.621-632
    • /
    • 2014
  • In this paper, we study the dynamical behavior of the one-dimensional convective Cahn-Hilliard equation(CCHE) on a periodic cell [$-{\pi},{\pi}$]. We prove that as the control parameter passes through the critical number, the CCHE bifurcates from the trivial solution to an attractor. We describe the bifurcated attractor in detail which gives the final patterns of solutions near the trivial solution.

THE QUASI-NEUTRAL LIMIT OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS FOR IONIC DYNAMICS

  • Kwon, Young-Sam
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1641-1654
    • /
    • 2019
  • In this paper we study the quasi-neutral limit of the compressible magnetohydrodynamic flows in the periodic domain ${\mathbb{T}}^3$ with the well-prepared initial data. We prove that the weak solution of the compressible magnetohydrodynamic flows governed by the Poisson equation converges to the strong solution of the compressible flow of magnetohydrodynamic flows as long as the latter exists.

PERIODICITY AND ATTRACTIVITY FOR A RATIONAL RECURSIVE SEQUENCE

  • ZHANG LIJIE;ZHANG GUANG;LIU HUI
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.191-201
    • /
    • 2005
  • In this paper, the existence of periodic positive solution and the attractivity are investigated for the rational recursive sequence $x_{n+1} = (A + ax_{n_k})/(b + x{n-l})$, where A, a and b are real numbers, k and l are nonnegative integer numbers.