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Propagation Speed of Torsional Waves in a Circular Rod with 

Harmonically Varying Materi이 Properties

*Jin Oh Kim

Abstract

The paper describes a theoretical study on the speed of torsional elastic waves propagating in a circular rod whose 

material properties vary periodically as harmonic functions of the axial coordinate. An approximate solution for the phase 

speed has been obtained by using the perturbation technique for shiusoidal modulation of small amplitude. This solution 

아lows that the wave speed in the nonuniform rod is dependent on the wave frequency as well as the periodic variation 

of the material properties. It implies that the torsional waves cons넌ered in this paper are dispersive even in the 

fundamental mode.

I. Introduction

Torsional elastic waves propagating in a waveguide have 
been adopted to develop on-line sensors measuring fluid 

viscosity[l]. The measurement is based on the phenomenon 
that the interaction between the torsion시 wave and the 

adjacent fluid affects the propagation characteristics of 
the torsional wave such as the speed and attenuation. 

The developed sensor includes an elastic waveguide with 

a circular cross-section.
One method for increasing the sensor's sensitivity is 

to reduce the mass moment of inertia of the waveguide. 
Another method is to increase the surface area per unit 
length of the waveguide contacting with the fluid. The 
latter can be accomplished by corrugating or modulating 

the surface of the waveguide, and the wave propagation 
in such a corrugated waveguide has been studied[2,3]. The 

former can be easily accomplished by taking a hollow 

cylinder rather than a solid one. It may, however, be 
necessary to consider the integrity of the hollow cylinder. 
In order to enhance the stiffness of the cylinder, it is 

reasovable to use a bamboo-shaped cylinder as shown in 

Fig. 1(a). Then, it is needed to understand wave 

propagation in such a waveguide.
The bamboo-shaped cylinder can be modelled for analysis 

as a circular rod with harmonically varying material 
properties as shown in Fig. 1(b). It is understood that 
the simplification of the model neglects the wave 
reflection which may occur at the material discontinuity. 

Wave propagation in periodic structures has been studied 
since Brillouin summarized some interesting topics in his 

book[4], and recently it has been applied to understand 

the mechanical phenomenon in a flat-panel speaker[5].
In this paper, the propagation of the fundamental 

mode of torsional elastic waves in a circular rod, whose 
shear modulus and mass density vary periodically as 

harmonic functions of the axial coordinate, is theoretically 

studied. The analysis consists of a perturbation expansion 

in the amplitude of the material property variation. The 

approximate solution of the phase speed is obtained 

using the perturbation technique for sinusBdal modulation 

of small amplitude.
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(b)

Fig니「e 1. Cross-sectional view of the periodically nonuniform 
circular rod;
(a) bamboo-shaped cylinder,
(b) a rod model with hannonically varying material 

properties.

II. Pro이em Formulation

Fig. 1(b) shows a waveguide where torsional elastic 
waves propagate. The waveguide consists of an elastic 
rod which has a circular cross-section and material 
properties, such as the shear modulus G(z) and mass 

density p ⑵，varying periodically as a function of the 
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axial coordinate z. For the fundamental mode of torsional 
waves, the di任erential equation of motion describing the 

dependence of the angular displacement 0 (乙 t) on the 
axial coordinate z and time t is given as follows[6].

으 0 好辭] = 忠十 ⑴

If the motion at each location is assumed to be 

time-harmonic, the variable 0 (z,0 can be separated as 

follows.

= 0(z) exp(；*H) (2)

Inserting Eq. (2) into Eq. (1) results in the following 

governing equation.

으 = —02p(z)@(z) (3)

The material properties, which vary periodically as 

harmonic functions of the axial coordinate, are expressed as

G{z) = Gq (1 + €sina2) (4)

p(z) = Qo (1 + £ y sin az) (5)

where s is the variation amplitude of the shear 

modulus relative to the mean value Go, and £ 7 is the 
variation amplitude of the mass density relative to the 

mean value pQ. Here a is the variation number of the 

material properties per unit length.

Since G and p are functions of z as in Eqs. (4) and 
(5), an exact solution of Eq. (3) is not available, and 
therefore an approximate solution is' obtained as follows.

III. Perturbation Solution

Since an exact solution to the problem formulated 
above is unlikely, an approximate perturbation analysis is 

adopted. The angular displacement amplitude 0(z) is 

expanded into a power series of £.

0(2, £)= 仞)(z) + £ ®i(n) + e")2(n) + … (6)

According to the perturbation technique well described by 
Nayfeh[7], an infinite sets of differentia equations are 

obtained from the coefficients of like powers in e by 
substituting Eqs. (4)-(6) into (3) and they are solved to 

yield 0o, 0i, 02,….

3.1. Solution of 0( e°)

The terms of 0( <f°) results in the leading order 

governing equation as follows.

d 界矽 +&%)o(n) = 0 az (7)

where

储= (8)

This problem admits the well-known solution[8], 

仞)(z) =AoeJ^ (9)

where j = (-1)1/2, Aq is the wave amplitude depending on 

the initial conditions, and k is the wavenumber. Since 

the wavenumber can be varied due to the nonuniformity 

of the material properties, k has the following form of 

series in terms of the perturbation s.

k = 如)+ & 如 + ?나如 + … (10)

Substituting Eq. (10) into Eq. (9) and then Eq. (9) 

into Eq. (7) yields an algebraic equation, and a root 
corresponding to the wave propagating in the positive 

direction is obtained as follows.

kQ = & (11)

Thus the leading order solution is

饥(n) = &)/3或 + 6 (12)

3.2. Sol니tion of 。(疽)

The terms of 0( e *)  result in the first order governing 

equation as follows.

, 2 八 / 、 • /(%伝) 绳辰)
―方/— + & 仞(z) = - sin az —^2------ a cos az—无■—

(13)

Substituting the leading order solution 0o(z) into the 

right-hand-side of Eq. (13) and changing the harmonic 

functions into exponential functions result in the 

following equation.
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岑끼 + 婀 (z)

=-/[一(&)+£為 + …)2 — 金(&)+ 盘1 + —) + &务1 

a 丿[(&)+ a) + £肉 + A。。

—%— (&+ eki + •••)2 + a(&} +鶴1 + •") + &疣I

A + 錦+ …]z
Ao。

(14)

The general solution of Eq. (14) has the following form.

仞(z) = Bi/AF+f + BgmEFi*  n，n
+爲-"너•攻 T… k 卩刀

By the way, the exponents of Eqs. (12) and (15) include 

the power series of e、and they should have been considered 
when Eq .(6) was substituted into Eq. (3). Therefore, Eqs. 
(12) and (15) are inserted in Eq. (6) and then Eqs. (4)-(6) 
are substituted into Eq. (3). The equations of the like 

orders of g are solved again. The leading order solution 

is the same as before, and Eqs. (11) and (12) are still 
valid. The following term is added to the right-hand side 

of Eq. (14): 2&)為&exp顷& +响 + …)n]

The terms of 0( e') yield three exponential functions, 

the coefficients of which compose the following equations.

(—盛 + 爲)瓦=2&)為 A。 (16)

[(&3)2-&潴 2 = 쓰Wo(角3-响) (17)

[(&一奁)2 — 30% = -丄夺 - Q- 7%) (18)

accounted for in Eq. (12) by letting

Bi = 0 (22)

When 8° approaches tz/2, the denominator of Eq. 

(21) becomes zero and B3 is not defined. This situation 

corresponds to resonance, and another mathematical 

scheme[5] should be adopted to obtain the solution, if 
needed.

Substituting Eqs. (20)-(22) into Eq. (15) determines 
the first order solution, which provides the correction of 

the wave amplitude according to the perturbation of the 

material properties. The correction of the wave speed has 

not been achieved because k\ = 0, and thus the next 
order solution is needed.

3.3. Solution of <9( 2)

The terms of 0( e2) results in the second order 

governing equation as follows.

으■号*히  4■ 成®2(n) = RHS (23)

The right-hand-side of Eq. (23) consists of five terms of 

exponential functions. Accordingly, the general solution 

of 02 has the following form.

®2(£)= C*
■，（& +普如十...）z

+ C3e
+ Qe

丿T (80 + a) + e偽+••山

7[(^Q~a) + e2k2 + —]2

+ C3e
}[ (&-2a) + 扌届一卜

+ C^e A (岛+ 2G+扌电

(24)

Eq. (16) yi이ds

Inserting Eq. (24) into Eq. (23) and collecting the 

coefficients of the first exponential function yield the 
following equation.

如=0 (19)

and Eqs. (17) and (18) yield

(20)

- 2&而瓦---4(8o + q)%2 + 3(&广~ °)2瓦

+ a)B2 + ~^a(0Q- a)B3 (25)

+ ~2，，이瓦 一 号 潟瓦 = 0

The expressions for B2 and B3 in Eqs. (20) and (21) 

are inserted in Eq. (25), and ki is obtained as follows.

B3 (21)

For uniqueness, the homogeneous solution shown in 
the first term of Eq. (15) can be regarded as being -1
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This is the correction of the wave speed.
The correction of the wave amplitude can also be 

obtained, but it is not of interest in this paper. When Bo 

approaches a/2, one denominator in Eq. (26) becomes 

zero and ki is not defined. This situation corresponds to 

the resonance, and another mathematical scheme[5] should 

be adopted to obtain the solution, if needed.

IV. Results and Discussion

Based on the information obtained so far, an approxi
mation for the phase speed of the torsional wave propagating 

in a circular rod with periodically nonuniform material 

properties has been constructed. Wave speed has the 
relationship with wave frequency and wavenumber as c - 
0/化 Thus the wave speed c normalized by co (= 

V Gq/pq), which is the speed of the torsional wave in a 

uniform rod, is expressed as follows.

告 = 쯘 = 1 — /쓳 + 0( e3) (27)

The normalized wave speed is obtained by inserting 

expressed in Eq. (26).

In order to evaluate the change of the wave speed 

due to the nonuniformity, the values of k^ko have been 

calculated for some cases. The values of k시k° are 
determined according to the values of / and B ol a. 

Figs. 2(a), 2(b), and 2(c) show the values of k시as 

functions of B d a for the cases of / equal to 0.2, 0.5, 
and 0.8, respectively. The graph is not valid where B oi 

a 수J 0.5, because Eq. (26) is not defined when Bo 

approaches a 12.

(a) / = 0.2

0o/a

(b) 0.5

(c) y = 0.8

Figure 2. Wave speed corections kj/ko depicted as a function 
of the wavenumber ratio B & a

It is shown that the value of k^ko is slightly different 
at different value of B d a, which is a function of 
frequency aj due to Eq. (8). This implies that the 
torsional waves considered in this paper are dispersive 

even in the fundamental mode, even though the 

fundamental mode of torsional waves propagating in a 

uniform circular rod is nondispersive[9].

V. Conclusion

An approximate theory has been derived to obtain the 

speed of torsional elastic waves propagating in a circular 
rod with harmonically varying material properties. The 

solution shows that the wave speed in the nonuniform 

rod is dependent on the wave frequency as well as the 

periodic variation of the material properties. It implies 
that the torsional waves considered in this paper are 

dispersive even in the fundamental mode.
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