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CONVERGENCE AND PERIODICITY IN A DISCRETE-TIME
NEURAL NETWORK MODEL OF TWO NEURONS
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ABSTRACT. For the discrete version of an artificial neural network of two
neurons with piecewise constant argument, we obtain some sufficient con-
ditions that every solution is either periodic or convergent.
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1. Introduction

Consider the following difference system
Tn+1 = A2 + f(yn),
=0,1,2,..., 1
{ Ynt+1 = Mygn = f(2n), " @
where A € (0,1) is a constant, f : R — R is given by
1, ué€la,bl,

f(“)z{ 0, ug b @)

Here a,b € R are constants.
The system (1) includes the discrete version of the following two-neuron net-
work model with piecewise constant argument

9% = —az + Bf(y([t])),
: - (3)
5 = ~ov — B (),

where [] denotes the greatest integer function, the constant a > 0 represents
the internal decay rate, the constant 3 > 0 measures the synaptic strength, z(t)
and y(t) denote the activations of the corresponding neurons, respectively, f is
the activation function.
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System (3) describes the evolution of two neurons network with excitatory inter-
actions, which has some interesting applications in, for example, image process-
ing of moving objects and has been studied in [7]. Moreover, there are some
interesting results for system (3) in [9] and references therein.

In fact, we can rewrite (3) in the following form

S @) = Bef(y(i)), “
Snet) = —Betfall).
Let n be a positive integer. Integrate (4) from n to ¢t € [n,n + 1) and obtain
(e —z(me = (6= 50t o

1

y(t)e** — y(n)eo™ —a(e"‘t — ") f(z(n)).

For any nonnegative integer k, we denote z(k) and y(k) by zx and yx, respec-
tively. Let t — n+ 1 in (5), then

Tnt1 = ;lgxn + é(l - g;)f(yn),

) i n=0,1,2,.... (6)
Ynt1 = e_&y" - a(l - é;)f(-’l/‘n):
Let
Ble* ~- 1) ae® ae”
* = ———— L * — —-——-b’
O G I i s
x*:_——aea T *:-————aea n=012,---
n ,B(ea _ 1) ny yn ﬁ(e“ . 1)y1’h { Rt B | *
Then it follows from (6) with dropping the  that
1
Tntl1 = ——Tn + f(yn),
n=20,12,.... (M

Ynt1 = e—“-yn - f(za),

Obviously, the system (7) is a special form of the system (1) with A = L.

The dynamics of the systems (1) and (3) have been extensively studied in
the literature. However, most of the existing work is concentrated on the case
where the function f is piecewise linear or a smooth sigmoid (see [2-5], [9]). To
the best of our knowledge, few results are given for the dynamics of (1) and (3)
when f is not continuous. As the signal function f is of the following piecewise
constant McCulloch-Pitts nonlinearity,

1, u <o,
f(u)_{_l’ u> o, GER”

systems (1) and (3) have been studied by some authors in [6-8], {10-12] and refer-
ences therein. The aim of this paper is to study the convergence and periodicity
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of solutions of (1) when f is of the form (2), which describes the input-output
relation of a neuron.

We denote by N the set of all nonnegative integers. For any m,n € N and
m < n, define N(m) = {m,m+1,m+2,...}, N(m,n) = {m,m+1,...n}. Let

b a . . _
Y = -)—\%-,uk = X’E’(b > 0,a < 0,k € N(0)). Then kil.rfoo% = +oo,k_l_{ri1°°uk =
—00. Let
I ={(z,y);z <a,y <a}, Lo = {(z,y);z < a,y € [a,b]},
Lz = {{z,y);z < a,y > b}, Iy = {(z,y);z € [a,bl,y < a},
Iz = {(z,y); z € [a,b],y € [a,b]}, Iz = {(z,y);z € [a,b],y > b},
Iy1 = {(z,y);z > b,y <a}, Iso = {(z,y);z > b,y € [a,b]},
I3z = {(2,y);z > b,y > b}, T = ((ves1,4+00) X (%, Y1),
keN
E= | (wrr1,v) X (=00, u1)), O = {J ((Wor W] X i, i),
keN keN
A= ((ra1,+00) X it mi)), Q= [ (s Wea1] X (=00, vk41)).-
kEN kEN
3
Obviously, U Ii,j=R2, YTClz, ZECi;, QUAUQ = I3.
t,j=1

By a solution of the system (1), we mean a sequence {(Zn,yn)} of points in
R? that is defined for all n € N(0) and satisfies (1) for n € N(1). Clearly, for
any (zg,y0) € R?, the system (1) has an unique solution {(zn,yn)} satisfying
the initial condition (Zn, yYn)ln=0 = (o, Yo)-

For the general background of difference equations, we refer to [1].

2. Main results

Throughout this paper, {(zn,yn)} denotes the unique solution of the system
(1) with initial value (zg,yo) € R%. Our main results state as the following.

Theorem 1. (1) Ifb< 0, then (z,,yn) — (0,0) as n — 0.
(2) Ifa >0, then (zn,yn) — (0,0) as n — oo.

1 1 1
3) Ifa<~m<0<bjm, then (dtn,yn)—)(T)\,lo) asn — oQ.
()If—- /\<a<0<i-—-——)\<bthen(:cn,yn)—~>(0— )asn—»oo
1 1 1
(5) Ifa<—;1_)‘<-1—__—/\<b, thenl(:cn,yn)a(l—x,~:—l_—/\) asn — 0.
(6) If—I—m—)\ <a<0<b Y and (xo,yo) € Isa U T UA, then

1
(Zn,yn) — (-1-__—/\,0) asn — oo.

1
(7) If—l——;l——,\— <a<0<b< =X and (zo,yo) € I UZ U Q, then

(wm yn) - (O,—m) as n — 00.
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Theorem 2. (1) (zn,yn) — (ﬁ,()) as 1 — 00, if (20,40) € (b, Ab + 1] X
[Aa —1,a) C I3; and one of the following conditions holds:

. 1 A

(1)—?<a< 1_:\\2<0<b< 3

(ll) —m<a<—m<0<b<f—_—xzﬁ

(iii)~L< < - ! <L<b<—1—
A 1-X2 1-x2 1-22

(2) (Zn,yn) — (O,—1 i )\) asn — 00, if (To,yo) € (b, Ab+1]x[Aa—1,a) C I3

and one of the following conditions holds:

1 1
(1)— /\ <a<0<1—/\)\2<b<i——?’
(11)—1_/\2<a<0<1_/\2<b<T—_—5\-2—;
("')—L<a<— < ! <b< !
W 1—x2 “1-x 1-x

Remark 1. By analysis, we can find that the solution {(z,, yn)} of (1) with the
initial value (g, 7o) € R? will be in the region I5; U I33 U I3; eventually when

1 1
—m<a<0<b<—)‘ Note that © U A U = I3;, by Theorems 1-2, it
remains to consider the case where (29, o) € © for — Y <a<0<b< —l—i—)\-

For m € N(1) and [ € N(0), let
1 Am-1 1 A"

L s gy ers SR Rl b dal g vova

0 B )\(m+2)(l+2)—2( )+ (1 — )\m)( + )\(m+2)(l+l)—l)
ml = ( )(1 . (m+2)(l+2) l)
+/\m+1(1 )\m+l)(1 /\(m+2)l)/( _)\m+2)
(1 — )(1 — ,\(m+2)(l+2)—1) ’
3 1-Am 4 )‘m+1(1 _ )\m+l)(1 _ /\(m+2)(l+1))/(1 _ Am+2)
Hmi = (1 - X1 — A+ (E+2)-1)
and
6 = (1 _ /\m)(l 4 AmH )\(m+2)(l+2)-1) + /\2m+2(1 _ ,\(m+2)(l+1))i:§:+1
ke (1 — A2 -1)(1 — ) '
1 A A 1
. _— < - < —_— =
Theorem 3. Let = /\<a_ 1_/\2<1_~)\2_b<1_/\,:1r:
b-(A-AM)/A-X . _et(1-AM)/0-2)

(1) If a € (—€m,—0m], b € [0m,€m), then the solution {(Zn,Pn)} of the sys-
tem (1) with the initial value (em, —€m) is periodic with minimal period m + 1.
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Moreover, for any solution {(zn,yn)} of (1) with initial value (zo,yo) € (b, Ab+
1} x [Aa - 1,0), nli.n;o(x" —Tpn) = nlingo(yn ~gn) = 0.

(2) If a € (_.U'm,h ”gm,l]: b € [gm,l,,um,l)i then there ezists a (507 370) €
(*, Ab+1] x [Aa —1,y*) such that the solution {(Zn,Pn)} of (1) with the initial
value (Zo, Jo) is periodic with minimal period (m+2)(l+2)—1. Moreover, for any
solution {(Zn,yn)} of (1) with the initial value (zo,yo) € (z*, Ab+1]x[Aa—~1,y"),
lim (z, — Z,) = lim (yn — Fn) =0.

n—o0 n-00

(3) Ifa € (—pm 1y &myt], b € [Emyis im,1), then there exists a (Zo, §o) € (b, z*] %
[y*,a) such that solution {(Zn,Pn)} of (1) with (Zo, o) is periodic with minimal
period (m+2)(1+2)—1. Moreover, for any solution {{zn,yn)} of (1) with initial
value (zo,%0) € (b,2*] x [y*, ), nlingo(xn —Zp) = nli_’rrelﬁ(y,1 —n)=0

Remark 2. For m € N(1),l € N(0), it is easy to see that [0m 1, tm1) C
(fm, m+l) [fmlaﬂml) (Ema(sm-}—l),
A
m=(51<61<52<62<(53<"'<5m<6m<"',
€m < O0mo < pmo < Om1 <+ < pmy <Omig1 < pmir1 <0 < g,
Em < €m,0 < pm,0 < Em,l < <§m,l <pmi < < 6m+ly

1
and Jgnwem = hm Pmi = Om+1-
Forme N(2)andl € N(O), let
A /\m—l
Gm = {omim ™= T
/\m[l 4 A(m+1)(I+1)+1 + )‘m+1(1 _ /\(m+l)l)/(1 _ /\m+1)}
Pml = 1 — A2+ '
B /\m[l + Xm+1(1 _ /\(m+1)(1+1))/(1 — )\m-{—l)]
Tmid = 1 — A1 '
2m+2 m+1¢1 _ V(m+1)({+1) _ ym+l1
wmi = A4 A Q4+ Amti(1 -\ /(1 —=A )]'

1 — Am+1)(i+2)+1

= A B = 6o/,
§* = (a+ A™)/(A™2),

(1) Ifa € (=my —Cm), b € [CmyTm), then the solution {(Zn,Fn)} of the system
(1) with the initial value (Nm, —Nm) is periodic with minimal period m+1. More-
over, for any solution {(Tn,yn)} of (1) with initial value (zo,y0) € (b, %] x[%,a),
lim (z, - Z,) = lim (yo —%n) = 0.

N -—+00 n—oo

(2) If a € (=Tmi,—pmils b € [PmyyTmy), then there exists a (Zo,%0) €
(%, 2] x [2,5"*) such that solution {(Zn,Fa)} of (1) with (%o, §io) is periodic with
minimal period (m+1)(142)+1. Moreover, for any solution {(xn,yn)} of (1) with
the initial value (zo,y0) € (2, %] X [£,77), ,}H{,‘o(mn —Zp) = nlggo(y" —9n)=0

Theorem 4. Let --—)‘— <ae<0<b<
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(3) If a € (~Tm,ty ~Wm,i)s b € [Wm,i,Tm 1), then there exists (Zo,Yo) € (b, Z*] x
[7*,a) such that the solution {(ZTn,.)} of (1) with the initial value (Zo, Jo)
is periodic with minimal period (m + 1)(I + 2) + 1. Moreover, for any solution
{(%n,yn)} of (1) with the initial value (zo,yo) € (b, Z*}x [7*, a), nlirr;o(xn—:in) =

hm (yn ¥n) =0.

Remark 3. Obviously, for m € N(2) and | € N, we have [pm,Tm,) C
(77m+11<m)1 [wm,l;Tm,l) C (nm-f-l,Cm);

'1_—)‘2=C1>772>C2>~'->77m-1>Cm—1>17m>---,

Nm+1 < Pm,0 < Tm,0 < Pm,1 < Tm,1 <o <L Pm,l < Tm,l < e L Cm,
Mmt1 < Wm,o < Tm,0 < Wm,t < Wmi < Tt < < Gmy
and lim 7, =0, im T = Gn.
m—o0 l—00

3. Proofs of main results

From (1) and (2), it is easy to see that the system (1) has an obvious connec-
tion with the following linear difference systems

Tnt1 = An +1 { Tntl = ATn, [ Tn41 = Aen, { Tnt1 = ATn + 1,
Yntl = AYn — 1; Yn+1 = AYn; Ynt+1 = AyYn — 15 Ynt1 = AYn. (8)
Therefore, we first consider the following relating equations
Untl = AUp + 1, Ung1 = Mg, Wny1 = Awp, — L. 9)

By induction, for n € N(ng), the solutions of equations in (9) with the initial
value c are given by

1— A"—mo _ \n—-np
un=)\"“"°c+———1,\ 3 vp = A"""¢, wp =/\"'"°c———-——-——1 1/\ T
- B (10)
Note that X € (0,1), it follows from (10) that
. . 1
nlLrI;oun =1 nhm vp, =0, nlergown = 1o (11)

We first give the proof of Theorem 1.

Proof. We only show the conclusion (1). The others are similar and omitted.
By (8) it follows that system (1) has four limited points A(0,0), B(T-i—;, 0),
C(0,—1= /\) and D(1 T — T ,\) Note that b < 0, there are A,B € Is3, C,D €
Iz if b < — ,OI'CDEIgzlfa<—————<b<0OI‘CDEIgllf—l,\<
a<b<. Therefore, in view of the distribution of the four limited points, for
any initial value (zo,y0) € R?, there exists a mo € N(1) such that (z,,yn) €
I3; U I3p U I3 for n € N(my). For initial value (zo,y0) € Is2 and (zo,y0) € I3,
the limited points of system (1) are B and A, respectively. Therefore, there
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exists a m € N(1) such that (zn,yn) € I3 for n € N(m), and by (8)-(11),
(Tn,yn) — (0,0) as n — co. ]

We next give the proof of Theorem 2 and only show the conclusion (1) as
assumption (i) holds. The others are similar and omitted.

Proof. Note —125 <@ < —125 <0< b < 1257 It follows that

E</\a—1<a<-a—i—1-<)\a, 9——1<Ab<b<£<)\b+1.
A A A
Since 0 < b < 17, there exists a m € N(1) such that
1-)\m A A

bsl_/\zmﬂ'l_)\z <1_/\2'

If we take the initial value (zo,y0) € (%, Ab+1] x [Aa—1,a), then by the second
in (8), we have

(12)

1= A2o >0, y1=Ayw>a, (z1,4)€ Isn. (13)
If we restrict (zo,yo) € (b, %] x [Aa—1,a), for n € N(1,m ~ 1), by (12), we have

1% i1, AL=X)
T € A1, Bann = AT w0 + =

and Zon42 > Tan, Tang1 > T2n—1, Yon € [Aa — 1,8), %2041 € [a,Aa). Thus, for
neN(l,m+1),

Ton = A"zo + € (Ab, b,

(T2n,Y2n) € I31, (Tont1,Yont1) € Do (14)

Case (1). Assume that zon € (b, 2] for some n € N(1,m — 1). If there is a
l < m such that, for n € N(1,1 - 1),

AM1=22-2) a+1 e[aaz—i-l)
1= =y ¥t =TT

then (z21-1,y2-1) € (Ab, 8] x %12, Xa) C Ir;. By the first in (8), we have
(@2, y21) = (Az2—1 + 1, Ayzi—1 — 1) € (b, Ab+ 1} x [a, b] C Ia9. (15)

If yan—1 € [a, £EL) for all n € N(1,7m), by (14) we have (Zam, Yom) € (%,,\b+
1] x [Aa — 1,a) and

Tom+41 > by, Yom41 > 0,  (T2m+1,Y2mi1) € I3a. (16)

Yoro1 = A2y —

Case (2). Assume To, > % foe some n € N(1,m), by the second in (8), we
have

(Tan+1, Yan+1) € I32. (17)
Therefore, in terms of (13,(15)-(17), for any (zo,%0) € (b,Ab+ 1] X [Aa — 1,a),
there exists a k € N(1) such that (zx,yx) € Is2. By the conclusion (6) in

Theorem 1, we have (&, yn) — (Ti—)\,O) as n — 00. O
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We sketch the proof of Theorem 3 as following.
Proof. By —1—1—,\ <a< —I—_’lxy < 'l':'\Tg <b< 1_1X’ it follows that

;5/\a—1<a</\a, ,\b<b<,\b+15;.
We first prove the conclusion (1). Let (zo,¥0) € (b, \b+1] X [Aa—1,a) C I3;.
Then
T =Moo <b, y1=Ay >a, (z1,41)€ (Ab,b] x [a,Aa) C Ip.
In view of the first in (8), there exists a n; € N(1) such that
(Zn,yn) € Iz for n € N(1,n1), (Tny+1,Yni+1) ¢ 22,

where
1-m-l 1—-am-1
In, = /\nlﬂ’f‘o + _].T < b, Yy = any() - —f'__r > a.
Since a € (—€m, —0m), b € [0m,€m), We have
(Tm,Ym) € D2,  (Tm+1,Ym+1) € (0, A0+ 1] X [Aa — 1,0) C I3,

that is, ny = m. Repeating the above proceeding, by induction, for { € N(0) and
k € N(1,m), we have

(T(m+1)ts Yemt1y) € (0, A0+ 1] x [Aa — 1, @), (T(m+1)14k: Yem+1)i+k) € T2z
By (9), we define
fi@) =X +1, fo(z) = Aa, fo() = Ao 1 (18)
and denote
F'm+l (a:,y) = ((f{n ° f2)($)a (fén o f2)(y))1 ("L‘,y) € (b’ Ab + 1] X [)‘a - 1’0')
where f"t1 = fo f. It yields that

—\™ 1 - \™
Fm+1(x;y) = (/\m+1$+ 1_—"—7)‘m+1y - A > )

1-A 1-A
F:1+1 ("1:7 y)
— An(m1) g o 1-am . 1 — \n(m+1) n(m+1)y _ 1-\m . 1 — \n(m+1)
1-X 1=\ mtl’ 1— X  1— amti

and lim F7 . (z,y) = (€m, —€m). Moreover,
n—oo

(T(m+1)n Ymann) = Frp1(To,%0), (%o, ¥0) € (b, A0+ 1] x [ha —1,a).

In fact, (€m, —€m) is the unique fixed point of Fi,41(z,y), and the solution
{(Zn,Fn)} of (1.1) with the initial value (€m,—€m) is periodic with minimal
period m + 1. Thus, for any solution {(Zn,yn)} of (1) with the initial value
(z0,%0) € (b,Ab+ 1] x [Aa — 1, a), we have nli_'n;o(xn —Tp) = nli_'ngo(yn —gn) =0.
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Next we prove the conclusion (2). By (18), for (z,y) € (b, Ab+1] x [Aa—1, a),
we define

Pryi(z) = (/" 0 £2)(2), Qmar(y) = (f3" 0 f2)(v)-
It follows from (18) that, for m € N(1),

1 \m I
T @mn(y) = A"y =

Note a € (—0m+1, —€m), b € (€m,0m+1), we have —1/(1~A) <y <0<z <
1/(1 = A) and Ppr(z) < Pp41(x), Qm+1(y) < Qm(y). Moreover,

Pr1(z%) = b, Pny2(c") = A0+ 1, Qmi1(y*) = a, Qm42(y") = da— 1.
Therefore, for (z,y) € (z*, Ab+ 1] x [Aa — 1,*),
Prti(z) € (0, A0+ 1], Qm+i1(y) € [Ma—1,0a)
and for (z,y) € (b,z*] X [y*, a),
Pri2(x) € (0, A0+ 1], Qmi2(y) € [Aa—1,0).

In view of a < =0, 0, b > 0m 0, We have Ppy1(Ab+1) < z*, and Pryi((z*, A0+
1) € (0,27], Qmi1(Aa—1) 2 y" and Qm41([Aa - 1,7)) C [y",a).
By @ € (—ptm iy —Om ], b € [0m 1, im 1), it follows that

P,fn+2 0Pppi(Ab+1)<z* and P,,l::{}Q 0 Ppy1(z*) > 27,
Q20 Pri1(da—1) 2" and Q11,0 Pnyi(y’) <y™.

Let (zo,y0) € (z*,Ab+ 1] x [Aa — 1,y*), and denote {(zn,yn)} by the solution
of (1) with the initial value (zo,yo). For n € N(1) and k € N(0,!), we have

Pryi(z) = A"z 4+

(Tmt14(mt2)ns Ym+1+(m+2)n) = (Pmtz © Pmy1(2o), @iz © @m+1(%0)),
(Tmt14(m+2)k Ymt1+(m+2k) € (b,z*] x [y*,a)
and
(Tt 14 (m+2)((41)r Ym+ 14+ (m+2)t+1)) € (%, A0+ 1] x (3%, A0+ 1]
On the other hand, for (z,y) € (z*,Ab+ 1] x [Aa — 1,y*), we define
H(z,y) = (Prlntlz o Pryi(z), Q?{iz o Qm+1(y)) .
Then, for (zo,y0) € (z*,Ab+ 1] x [Aa — 1,y*), it follows that
(T(m+2)+2)-1> Ym+2)(1+2)-1) = H(Zo, Yo)-
Obviously, there exists a (Zo,%o) € (z*,Ab + 1] X [Aa — 1,y*) such that, for
(z,y) € (z*, Ab+ 1] x [Aa — 1y*),
lim H®(z,y) = (30, 0)
where (%o, Jo) is the unique fixed point of H. Therefore, the solution {(Zn,7n)}

of (1) with the initial value (Zq,%0) € (z*,Ab+ 1] x [Aa — 1,y*) is periodic with
minimal period (m + 2)(I + 2) — 1. Moreover, for any solution {(zn,y.)} of (1)
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with the initial value (zo,v0) € (z*,Ab+ 1] X [Aa — 1,3*), nlir{.xo(:cn —Zp) =
Jim (yn —a) = 0.
The proof of conclusion (3) is similar to the above, and is omitted. 0

Finally, we sketch the proof of Theorem 4 and only prove the conclusion (1).
The others are similar to that of Theorem 3 and omitted.

Proof. By*l__—,\)‘z' <a<0<b<ﬁ7,wehave

a+1 b-1 b

T X <A <b< 3 < Ab+1.
Let (zo,0) € (b,b/)] x [a/A,a) C I3;. Then z1 = Azo,y1 = Mo, T2 = A\%zo +
1,92 = A%yp — 1, where (z1,31) € g, (72,%2) € (5, b+ 1] x [Aa — 1,a) C I5;.
Since a € (—7m, —Cm), b € {Cm,Mm), we have

b a
(ZTn,yn) € (X’)‘b+ 1] X [/\a -1, X> , n € N(2,m),

)\a—1<§<a<)\a<

b a
(Tm+1,Ymt1) € (b, X] X [X’a)’ (Tm+2,Ym+2) € I, m € N(2),
where 2, = A" 229 = A"2o + A2, Yo = A" 2y = Ayo— A" "2, n € N(2,m+
1). For [ € N(0), and k € N(2,m), repeating the above proceeding, we have

b a
(T 1)1tk Yma1)i+k) € (X’ Ab + 1} X [Aa -1, X) ,

(@(man)ir1s Yomayi+1) € 1220 (Tm1)ts Ymr1)) € (b, g} X [;,a>-
By means of (18), for (z,y) € (b,b/A] x [a/A, a), we define
Gmi1(z,y) = ((f5 " 0 fro f2)(2), (f71 0 fa 0 f2)(y))-
It yields that
Crmar(2,y) = (X" 1z A1 Amtly — xm=t),

Gr1(®9)

_ (An(mﬂ)m + Am—1(] — \nimt1)y

1 —  am+l

,)\n(mﬂ)y -

/\m-l(l _ )\n(m-i-l))
1 — \m+l )

and lim Gy, . 1(,¥) = (Pm, —7m). Moreover, for (zo,y0) € (b,b/)] x [a/},a),

n—oo

($(m+1)my(m+1)n) = GZH(IO, Yo)-
Obviously, (Nm, —1m) is the unique fixed point of G,,+1 and the solution {(Zn, J»)}
of (1.1) with the initial value (9m, —7m) is periodic with minimal period m + 1.
Moreover, for any solution {(zn,yn)} of (1) with the initial value (zo,y0) €
(b,b/A] x [a/A,a), we have lim (z, ~Z,) = lim (yn — Fn) =0. 0O
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