• Title/Summary/Keyword: Performance-based

Search Result 49,114, Processing Time 0.067 seconds

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

PRELIMINARY STUDY REGARDING A DB CONSTRUCTION PLAN TO SUPPORT PERFORMANCE TECHNICAL A REMODELING ELEMENT TO BIM

  • Yong-Hyun Lee;Jong-soon Park;Jong-Sik Lee;Jae-Sauk Lee;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1300-1306
    • /
    • 2009
  • If a brief direction and plan for a remodeling project are decided, it may moves to a concrete design step of which to select the most suitable alternative out of applicable compounding devices to reveal dynamic drifting performance. However, the volume of knowledge baseed utility which can refer to systematic evaluation regarding remodeling element technology and the accumulation of realistic cases are not only sufficient, but also short including its system for expression and consistency. Therefore, it may necessary to deliver the main frame which make enables the Owner, designer and builder to get performance technology for applying advanced remodeling element and knowledge based utility. There is a necessity to provide an information with latest made by virtue of modeling in the 3D/4D based on construction-based knowledge etc. which we can use for life cycle of a project, as a prominent way of knowledge based utility. Then, it is sure that remodeling can become more activative by sharing of knowledge based utility formed in electronic 3D/4D which is a systematic and expressed consistently to a performance and applicability in preservation of savings. It is expected for modeling of the 3D/4D in knowledge based utility enables to verify the practicability of each technology on effective application, and the use of technology might be spread widely due its obvious and oriented expressions. Further, this knowledge based utility formed in electronic 3D/4D may applicable for VE process in addition to remodeling design fields.

  • PDF

Difficulties and differences in perception and performance on process-based assessment for high school mathematics teacher (고등학교 수학 교사 인식에 나타난 과정 중심 평가와 수행 차이 및 어려움)

  • Oh, Seoyoung;Kwon, Na Young
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.239-256
    • /
    • 2022
  • This study was to investigate the perception, performance, and difficulties of process-based assessment for high school mathematics teachers. As a qualitative case study, two in-depth group interviews were conducted with 6 high school mathematics teachers working in Incheon area. The two groups were one with more experience in process-based assessment and the other with less experience. As results, there were differences between the participant teachers' perception of process-based assessment and their actual performance depending on the experience. All six math teachers thought that the process-based assessment was intended to confirm the learner's characteristics, to evaluate the process, and to provide feedback on a regular basis immediately and individually. However, in the practical performance shared by teachers, the purpose of assessment was to create a school record. A group with a lot of experience prepared assessment criteria according to the national curriculum achievement standards, established affective assessment plans, and tried to provide individual feedback on a regular basis. On the other hand, the inexperienced group recorded the affective characteristics discovered by chance and provided temporary and large-scale feedback regardless of the achievement criteria. Finally, we suggested some implications based on the study results.

Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

  • Hong, Sunghyuck;Lee, Sungjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.149-165
    • /
    • 2013
  • Current group key agreement protocols, which are often tree-based, have unnecessary delays that are caused when members with low-performance computer systems join a group key computation process. These delays are caused by the computations necessary to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of queue-based group key generation. We propose an efficient group key agreement protocol and present the results of performance evaluation tests of this protocol. The queue-based approach that we propose is scalable and requires less computational overhead than conventional tree-based protocols.

Implementation and Performance Evaluation of Vector based Rasterization Algorithm using a Many-Core Processor (매니코어 프로세서를 이용한 벡터 기반 래스터화 알고리즘 구현 및 성능평가)

  • Shon, Dong-Koo;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, we implemented and evaluated the performance of a vector-based rasterization algorithm of 3D graphics using a SIMD-based many-core processor that consists of 4,096 processing elements. In addition, we compared the performance and efficiency of the rasterization algorithm using the many-core processor and commercial GPU (Graphics Processing Unit) system which consists of 7 GPUs and each of which have 512 cores. Experimental results showed that the SIMD-based many-core processor outperforms the commercial GPU system in terms of execution time (3.13x speedup), energy efficiency (17.5x better), and area efficiency (13.3x better). These results demonstrate that the SIMD-based many-core processor has potential as an embedded mobile processor.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • MALSORI
    • /
    • no.64
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

  • Hong, Sunghyuck;Lee, Sungjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1737-1753
    • /
    • 2013
  • Current group key agreement protocols, which are often tree-based, have unnecessary delays that are caused when members with low-performance computer systems join a group key computation process. These delays are caused by the computations necessary to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of queue-based group key generation. We propose an efficient group key agreement protocol and present the results of performance evaluation tests of this protocol. The queue-based approach that we propose is scalable and requires less computational overhead than conventional tree-based protocols.

Structural performance monitoring of an urban footbridge

  • Xi, P.S.;Ye, X.W.;Jin, T.;Chen, B.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.129-150
    • /
    • 2018
  • This paper presents the structural performance monitoring of an urban footbridge located in Hangzhou, China. The structural health monitoring (SHM) system is designed and implemented for the footbridge to monitor the structural responses of the footbridge and to ensure the structural safety during the period of operation. The monitoring data of stress and displacement measured by the fiber Bragg grating (FBG)-based sensors installed at the critical locations are used to analyze and assess the operation performance of the footbridge. A linear regression method is applied to separate the temperature effect from the stress monitoring data measured by the FBG-based strain sensors. In addition, the static vertical displacement of the footbridge measured by the FBG-based hydrostatic level gauges are presented and compared with the dynamic displacement remotely measured by a machine vision-based measurement system. Based on the examination of the monitored stress and displacement data, the structural safety evaluation is executed in combination with the defined condition index.

Parameter optimization for SVM using dynamic encoding algorithm

  • Park, Young-Su;Lee, Young-Kow;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2542-2547
    • /
    • 2005
  • In this paper, we propose a support vector machine (SVM) hyper and kernel parameter optimization method which is based on minimizing radius/margin bound which is a kind of estimation of leave-one-error. This method uses dynamic encoding algorithm for search (DEAS) and gradient information for better optimization performance. DEAS is a recently proposed optimization algorithm which is based on variable length binary encoding method. This method has less computation time than genetic algorithm (GA) based and grid search based methods and better performance on finding global optimal value than gradient based methods. It is very efficient in practical applications. Hand-written letter data of MNI steel are used to evaluate the performance.

  • PDF

Single Image Fog Removal based on JBDC and Pixel-based Transmission Estimation

  • Kim, Jongho
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.118-126
    • /
    • 2020
  • In this paper, we present an effective single image fog removal by using the Joint Bright and Dark Channel (JBDC) and pixel-based transmission estimation to enhance the visibility of outdoor images susceptible to degradation due to weather and environmental conditions. The conventional methods include refinement process of coarse transmission with heavy computational complexity. The proposed transmission estimation reveals excellent edge-preserving performance and does not require the refinement process. We estimate the atmospheric light in pixel-based fashion, which can improve the transmission estimation performance and visual quality of the restored image. Moreover, we propose an adaptive transmission estimation to enhance the visual quality specifically in sky regions. Comprehensive experiments on various fog images show that the proposed method exhibits reduced computational complexity and excellent fog removal performance, compared with the existing methods; thus, it can be applied to various fields including real-time devices.