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Abstract: In this paper, we propose a support vector machine (SVM) hyper and kernel parameter optimization method

which is based on minimizing radius/margin bound which is a kind of estimation of leave-one-error. This method uses dynamic

encoding algorithm for search (DEAS) and gradient information for better optimization performance. DEAS is a recently

proposed optimization algorithm which is based on variable length binary encoding method. This method has less computation

time than genetic algorithm (GA) based and grid search based methods and better performance on finding global optimal value

than gradient based methods. It is very efficient in practical applications. Hand-written letter data of MNI steel are used to

evaluate the performance.
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1. Introduction

SVM has been applied to many engineering practices for clas-

sification and regression. However, it shows significantly dif-

ferent performance according to kernel functions and SVM

hyper-parameters. Generally, these have been determined

arbitrarily by trial and error method.

Recently, some algorithms were proposed to find parameters

automatically using gradient descent method in [5][1] or grid

search. However, the parameters found by these methods

can be not optimal but local minima in some cases. More-

over, if the parameter range is large and grids are dense, they

require very long computation time. In the case of gradient

descent method, if the initial point is not properly selected,

it can’t find the optimal value [1].

To overcome these drawbacks, some researchers have pre-

sented new method using both GA and gradient search. It

is called GA-quasi-Newton algorithm [4]. However, GA re-

quires long computation time for little improvement on gen-

eralization performance.

In this paper DEAS is applied to find optimal SVM param-

eters which affect the performance of SVM, gradient descent

method is used to find more exact values of parameters.

Dynamic encoding algorithm for search (DEAS) proposed in

[2] is based on dynamic binary string encoding for parame-

ters. It is basically consists of Bi-sectional search (BSS) step

and Unidirectional search (UDS) step. BSS step is a step for

finding better parameter values and directions of UDS using

bisectional search increasing coding length that increases the

resolution of parameters. UDS is a searching step which fol-

lows the directions decided in BSS step with out increasing

code length.

Brief introductions of SVM and radius margin bound and

itś derivatives are given in Section 2, and the basic concepts

of DEAS are explained in Section 3. In Section 4, proposed

method is explained. The experimental result and discus-

sion are described in the Section 5, In section 6, this paper

summarize the conclusions.

2. Support Vector Machine
SVM is a binary classification algorithm based on statistical

learning theory. The purpose of this algorithm is to make

classifiers that produces desired output for given training

data set LN = {(xi, yi)}i=0,...,N , where N is the number of

training set , xi is ith input vector and yi ∈ {−1, +1} is ith

output that denotes the desired output class. The output

value is based on the following decision function [6]:

f(x) =

N∑
i=1

(yiα
0
i K(xi, x)) + b, (1)

where α0
i ≥ 0 is the Lagrangian multiplier, b is bias term

and K(xi, xj) is kernel function that maps the input vectors

to the feature space. For given training data set L, finding

the α0
i , i = 0..N which satisfy the output yi with respect to

x is SVM training problem. α0 can be obtained by solving

the following quadratic optimization problem [8]:

min
α

W (α) = min
α
{

N∑
i=1

αi −
N∑

i,j=1

αiαjyiyjK(xi, xj)} (2)

with constraints subject to

0 ≤ αi and

N∑
i=1

αiyi = 0, i = 1, ...., N (3)

and for every input xi, f(xi) satisfies yif(xi) ≥ 1 this for-

mulation is hard margin SVM optimization problem formu-

lation. In hard margin formulation, no training errors are

allowed.

2.1. Soft margin form

However, if there exist non-separable inputs what is called

slack vector, it is needed to allowed training error which

results soft margin algorithm. However, it can be considered

as a special case of a hard margin form with the modified

kernel [5][4]:

K̃(xi, xj) = K(xi, xj) +
1

C
δij , (4)

where δij = 1 when i = j and δij = 0 when otherwise. Then

the constraint(3) modified as 0 ≤ αi ≤ C. C is a constant
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that controls the tradeoff between complexity of the decision

function and the number of the training inputs that miss

classified [7].

There are many different types of kernel functions. However

the Popular choices of kernel functions are

Gaussian kernel : K(x, y) = exp

(
−‖x− y‖22

2σ2

)
(5)

Polynomial kernel : K(x, y) =
(
1 +

x · y
σ2

)d

. (6)

In this paper, the Gaussian kernel is used for calculation and

experiment.

2.2. Radius/margin bound

The performance of the SVM classifiers are described as the

generalization error rate that is the error rate of input data

set which is not included in training set. There are mainly

two types of performance estimate are exist, single validation

estimate leave-one-out and bounds.

If there exist enough data available, which called validation

set, it is possible to estimate the true error rate. the sin-

gle validation error T [5], for the given validation data set

{(xj , yj)}, i = 1, ..., p,

T =
1

p

p∑
i=1

Ψ(−yif(xi)), (7)

where Ψ is a step function and p is the number of valida-

tion set. While the Leave-one-out procedure, for the data

set removing one element and training the SVM with the re-

mained data and test the removed input data element. but it

required large computation time if the number of a training

data are large. These two estimations of the generalization

performance are not easy to analysis and hard to find the gra-

dient with respect to the SVM parameters. However it was

shown by Vapnik and Chapelle [5] that following inequality

holds,

Leave−One−Out error rate ≤ T =
1

N

R2

γ2
=

1

N
R2 ‖ w ‖22

(8)

where R is the radius of smallest sphere enclosing the train-

ing points mapped into a high dimensional feature space , w

is a weight vector and γ is the margin. Thus, to minimize

the T , one have to maximize the γ2 and minimize the R2.

To maximize the margin γ2, minimize the 2-norm of weight

vector ‖ w ‖22, the norm of w∗, which is the optimal w, [6]

1

γ2
=‖ w ‖22=

N∑
i,j=0

yiyjα
0
i α

0
jK̃(xi, xj) =

N∑
i=0

α0
i− 1

C
< α0•α0 > .

(9)

The radius R can be obtained by solving following equation

[8][4]:

R2 =

N∑
i=1

β0
i K̃(xi, xj)−

N∑
i,j=0

β0
i β0

j K̃(xi, xj) (10)

where the β0
i is the solution of following quadratic optimiza-

tion problem,

min
β

(
N∑

i=1

βiK̃(xi, xj)−
N∑

i,j=0

βiβjK̃(xi, xj)

)
, (11)

with constraints subject to

N∑
i=1

βi = 1, βi ≥ 0. (12)

If there exist slack vectors, the radius/margin bound of the

generalization error can be rewritten as in terms of 2-norm

of a slack variables [6].

R2 +
‖ξ‖22
‖w‖22

γ2
= ‖ w ‖22

(
R2 +

‖ ξ ‖22
‖ w ‖22

)
(13)

= ‖ w ‖22 R2+ ‖ ξ ‖22, (14)

where ξ is a vector of the slack variables that satisfies Karush-

Kuhn-Tucker complementary condition:

αi [yi(< w • xi > +b)− 1 + ξi] = 0, i = 1, ..., N. (15)

The properties of the bound given in equation (14), will be

discussed in the experiment and discussion section, section 5..

2.3. Derivative of radius margin bound

In most case, finding the gradient with respect to the SVM

parameters (C, σ2) of radius/margin bound requirers expen-

sive matrix operations involving the kernel matrix. Thus,

this paper consider only the Gaussian kernel function given

by (5), because it is relatively easy to find the gradient

of T , the radius/margin bound. The gradients of the ra-

dius/margin bound are calculated in [5] as following equa-

tions:

∂T

∂C
=

1

N

[
∂ ‖ w ‖22

∂C
R2+ ‖ w ‖22 ∂R2

∂C

]
(16)

∂T

∂σ2
=

1

N

[
∂ ‖ w ‖22

∂σ2
R2+ ‖ w ‖22 ∂R2

∂σ2

]
. (17)

The derivatives of ‖ w ‖22 are as follows [1]:

∂ ‖ w ‖22
∂C

=

N∑
i=1

α2
i

C2
(18)

∂ ‖ w ‖22
∂σ2

= −
N∑

i,j=1

αiαjyiyj
∂K̃(xi, xj)

∂σ2
(19)

and the derivatives of R2 are as follows:

∂R2

∂C
= −

N∑
i=1

βi(1− βi)

C2
(20)

∂R2

∂σ2
= −

N∑
i,j=1

βiβj
∂K̃(xi, xj)

∂σ2
. (21)

The derivative of the kernel with respect to σ2 is

∂K̃(xi, xj)

∂σ2
= K̃(xi, xj)

‖ xi − xj ‖22
2σ4

. (22)

Thus, the gradient of the radius/margin bound is easily com-

puted(because ‖ w ‖22,α, R2, and β are all available).
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3. DEAS
DEAS basically consists of two procedures: bisectional

search(BSS) and unidirectional search(UDS). In the BSS

step, the length of binary code is extended by 1 and the

resolution of parameters is increased. The behavior of the

BSS is explained about 1 and 2 dimensional case in Figure

1. By using the BSS, the minimum value of the a function

for the parameterized code is found and also determined the

direction of the UDS [2]. Figure 2. shows the UDS step after

Fig. 1. Bisectional search(BSS).

a BSS step in a 2-dimensional parameter space. The direc-

tion found by the BSS step reflects descending tendency of

the cost function. Thus, in a UDS steps, the evaluation of

the cost function continues, until there are no smaller costs

than the current minimum cost value, along the given di-

rection. In the UDS steps, the length of the binary code is

preserved while the binary code values increase or decrease

[3]. The binary codes correspond to the values in a normal-

Fig. 2. Unidirectional search(UDS).

ized parameter space. The encoding of the binary code is

given in Figure 3. Other encodings are also possible. For

more detailed information refer [2][3].

4. SVM parameter optimization using DEAS
and gradient descent method

The proposed method is a SVM parameter tuning frame-

work based on DEAS and gradient descent method as an

option. This method uses DEAS to find optimal values for

the given resolution (length of binary string). For the candi-

dates of optimal found by DEAS, gradient descent method

Fig. 3. Binary value encoding.

is applied to get more optimal solution. This framework for

SVM parameter tuning is written in simple pseudo code:

1. Select the ranges of SVM parameters.

2. Select starting and terminating resolution of DEAS

as the binary coding length (s,m) and determine the

parameter resolution tolerance e.

3. Using DEAS, find the local optimal values for the

given target resolution of DEAS.

4. For the candidate of optimal values found by DEAS

If: 1
2m+1−1

≤ e then, stop.

Else: start gradient descent method.

5. Save the optimal value and exit the algorithm.

There were some earlier works on the SVM parameter op-

timization. They used generally gradient descent method

[5][1] or GA with gradient descent method [4]. In compar-

ison with other method, the proposed method has several

advantages.

First, it has less probability to fail in finding optimal pa-

rameters or to get stuck in local minimum in comparison

with gradient descent based method [1]. Since proposed

method starts in many starting points, it has less probabil-

ity to fail in finding optimal parameters. One can say that

if the gradient descent method also can have multi starting

points. However, if that strategy is applied to the gradient

descent method, there will be many unnecessary gradient

calculations around the minimum. In contrast with gradient

descent method, DEAS has revisit check procedure for the

calculated point and terminate that iteration to avoid over-

lapping of searching area. Second, if the target resolution is

sufficiently fine, there is no need to calculate the gradient of

the radius/margin bound with respect to the SVM param-

eters. Thus it is useful when tuning the SVM parameters

which is applied other kernels and other bounds. In many

cases, the calculation of the gradient of radius/margin bound

requires expensive matrix calculations involving kernel ma-

trix KN×N .

GA based gradient descent algorithm was proposed in [4].

However, GA based on randomness of mutation, therefor,

large computation time is required for little enhancement of

performance. Thus, the computational requirement of DEAS

is much less than the GA based algorithm. More over, DEAS

has a strategy for the faster convergence to the minimum

that makes DEAS more efficient searching algorithm.
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Fig. 4. The radius/margin bounds with the equation (14)

for separating ’1’ form ’2’.

5. Experimental Result and discussion
In this experiment, MNI steel hand-written character data

are used. Table 1 shows the data which used in the SVM

parameter tuning experiment. The error rate and the radius

margin bounds with respect to the parameters are plotted

on Figure 4., Figure 5. and Figure 6. Figure 4.,5. and 6.

shows the error rate and bound for the first case in Table

1. The Figure 4. is a graph of the modified radius/margin

bound which is related with equation (14) in [6]. Figure 5.

is a graph of the radius/margin bound in the equation (8),

and the Figure 6. is a graph of the error rate for the training

data.
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Fig. 5. The radius/margin bounds with the equation (8) for

separating ’1’ form ’2’.

In these figures, one can see that the radius/magin bound

based on the equation (14) shows better estimation for the

error rate on this SVM parameter tuning problem than based

on the equation (8) Thus, this paper use the modified radius

margin form which makes slightly different the gradient form.

However, it is easy to obtain the gradient when using 2-norm

Training and test data

training data number of number of test

training data vectors

class-1 class+1 class-1 class+1 class-1 class+1

’1’ ’2’ 20 20 100 100

’4’ ’9’ 20 20 100 100

’7’ ’9’ 20 20 100 100

’7’ ’8’ and ’0’ 40 20+20 100 200

Table 1. The size of the training and test data.
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Fig. 6. The error rate for training set for separating ’1’ form

’2’.

−1
−0.5

0
0.5

1
1.5

2

−4−3−2−10123456 log
10

(σ2)
log

10
(C)

Fig. 7. The radius/magin bound for separating ’7’ from ’8’

and ’0’.

soft margin form of the SVM with the condition αi = Cξi

[6]. Then, the gradient of the radius/margin bound changes

as follows:

∂T

∂C
=

1

N

[
∂ ‖ w ‖22

∂C
R2+ ‖ w ‖22 ∂R2

∂C
+

∂ ‖ ξ ‖22
∂C

]
(23)

=
1

N

[
∂ ‖ w ‖22

∂C
R2+ ‖ w ‖22 ∂R2

∂C
+
−2

C3

N∑
i=1

αi

]
(24)

∂T

∂σ2
=

1

N

[
∂ ‖ w ‖22

∂σ2
R2+ ‖ w ‖22 ∂R2

∂σ2

]
. (25)

For given data sets in Table 1, DEAS is applied for parameter

optimization. The result of of DEAS is shown in Table 2.

The staring length of binary code of DEAS is 5 and the target

length is 10. For efficiency, 100 starting points are selected

randomly. Figure 9. shows the results and the characteristics
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SVM parameter tunig with DEAS.
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Fig. 9. Applying DEAS on SVM parameter optimization

that separate ’7’ from ’8’ and ’0’.

Fig. 10. Applying DEAS with starting resoution 4 and

target resolution 6 and gradient descent method on a

SVM parameter optimization that separate ’4’ from ’9’

.
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Fig. 11. Applying gradient descent method after DEAS on

a SVM parameter optimization that separate ’4’ from

’9’.

separating data sets

’1’-’2’ ’4’-’9’ ’7’-’9’ ’7’-

’0’&’8’

σ2 2.050350

e+003

2.144758

e+003

1.530209

e+003

3.421737

e+003

C 1.077105

e+000

1.106594

e+000

1.077105

e+000

1.181427

e+000

rasius mar-

gin bound

2.503370

e-001

3.649682

e-001

3.860656

e-001

1.991583

e-001

errorate 5.500000

e-002

2.300000

e-001

1.500000

e-001

4.333333

e-002

evaluation

count

2595 2622 2500 2741

Table 2. Optimal values found by DEAS only with starting

resolution 5 and target resolution 10.

of DEAS for given data set(’7’-’0’,’8’). The dots denote the

parameter point that the values of radius/margin bound is

evaluated.

Figure 10. and 11. show the example of hybrid method,

DEAS and gradient descent method. The start length of

binary code of DEAS is 4 and the target length is 6. After

DEAS, gradient descent method is applied to the result fount

by DEAS. The result is shown in Table 3. The radius/margin

is improved than the radius margin bound in Table 1 with

less evaluation of the radius/margin bound. If the resolutions

of the parameters are sufficiently fine, the iteration step of

DEAS is completed. If the resolution of the parameters is not

sufficiently fine, additional gradient descent step is executed.

Since the bound is rough, the SVM parameter found by the

radius/margin bound is close to optimal , but not optimal

in practice.

However, it is possible to find the optimal parameters using

the training error with DEAS, for reasonable size of subset of

a test data with respect to the SVM parameters. Proposed

method can be used in parameter tuning with test errors

that are generally discrete with respect to the parameters.

More over, it requires much less computation time than the

GA or other searching methods based on randomness.

’4’-’9’ with

DEAS

’4’-’9’ with

gradient descent

method after

DEAS

sigma2 2.002568e+003 2.132606e+003

C 1.037225e+000 1.105078e+000

radius margin

bound

3.654323e-001 3.649664e-001

error rate 2.250000e-001 2.300000e-001

Table 3. Parameter optimizing using both DEAS and the

gradient descent method
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6. conclusion
This paper shows that the radius/margin bound is gener-

ally rough. Moreover, the optimal parameter value which is

found by using the radius/margin bound can converge or di-

verge into unreasonable value. To overcome the drawback of

using radius/margin bound, the radius margin bound equa-

tion changed (8) to (14) . This paper also propose an efficient

method for the SVM parameter tuning method using DEAS,

even if gradient information is not available. If it is avail-

able, using a hybrid strategy which controls the resolution

of DEAS and uses the gradient decent method, one can find

the optimal value more efficiently.
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