• Title/Summary/Keyword: Performance of Optimization

Search Result 5,489, Processing Time 0.038 seconds

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Goal-Pareto based NSGA Optimization Algorithm (Goal-Pareto 기반의 NSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Shin, Yo-An;Yoo, Myung-Sik;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.108-115
    • /
    • 2007
  • This paper proposes a new optimization algorithm prescribed by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) whose result satisfies the user's needs and goals to enhance the performance of optimization. Typically, lots of real-world engineering problems encounter simultaneous optimization subject to satisfying prescribed multiple objectives. Unfortunately, since these objectives might be mutually competitive, it is hardly to find a unique solution satisfying every objectives. Instead, many researches have been investigated in order to obtain an optimal solution with sacrificing more than one objectives. This paper introduces a novel optimization scheme named by GBNSGA obeying both goals as well as objectives as possible as it can via allocating candidated solutions on Pareto front, which enhances the performance of Pareto based optimization. The performance of the proposed GBNSGA will be compared with that of the conventional NSGA and weighted-sum approach.

Block-Coordinate Gauss-Newton Optimization for Image Registration (영상 정합을 위한 Block-Coordinate Gauss-Newton 최적화)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, research on joint optimization of the image spatial registration and the exposure compensation is conducted. The exposure compensation is performed in a frame work of the intensity compensation based on the polynomial approximation of the relationship between images. This compensation is jointly combined with the registration problem employing the Gauss-Newton nonlinear optimization method. In this paper, to perform for a simple and stable optimization, the block-coordinate method is combined with the Gauss-Newton optimization and extensively compared with the traditional approaches. Furthermore, regression analysis is considered in the compensation part for a better stable performance. By combining the block-coordinate method with the Gauss-Newton optimization, we can obtain a compatible performance reducing the computational complexity and stabilizing the performance. In the numerical result for a particular image, we obtain a satisfactory result for 10 repeats of the iteration, which implies a 50% reduction of the computational complexity. The error is also further reduced by 1.5dB compared to the ordinary method.

Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector (해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화)

  • Song, Chang Yong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2021
  • In this paper, the meta-model based approximate optimization was carried out for the structure design of an ocean automatic salt collector in order to minimize the structure weight. The structural analysis was performed by using the finite element method to evaluate the strength performance of the ocean automatic salt collector in its initial design. In the structural analysis, it was evaluated the strength performance of the design load conditions. The optimum design problem was formulated so that design variables of main structure thickness would be determined by minimizing the structure weight subject to strength performance constraints. The meta-models used in the approximate optimization were the response surface method, Kriging model, and Chebyshev orthogonal polynomials. Regarding to the numerical characteristics, the solution results from approximate optimization techniques were compared to the results of non-approximate optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the ocean automatic salt collector.

Shape Optimization to Minimize The Response Time of Direct-acting Solenoid Valve

  • Shin, Yujeong;Lee, Seunghwan;Choi, Changhwan;Kim, Jinho
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • Direct-acting solenoid valves are used in the automotive industry due to their simple structure and quick response in controlling the flow of fluid. We performed an optimization study of response time in order to improve the dynamic performance of a direct-acting solenoid valve. For the optimal design process, we used the commercial optimization software PIAnO, which provides various tools for efficient optimization including design of experiments (DOE), approximation techniques, and a design optimization algorithm. 35 sampling points of computational experiments are performed to find the optimum values of the design variables. In all cases, ANSYS Maxwell electromagnetic analysis software was used to model the electromagnetic dynamics. An approximate model generated from the electromagnetic analysis was estimated and used for the optimization. The best optimization model was selected using the verified approximation model called the Kriging model, and an optimization algorithm called the progressive quadratic response surface method (PQRSM).

An Optimization Method of Neural Networks using Adaptive Regulraization, Pruning, and BIC (적응적 정규화, 프루닝 및 BIC를 이용한 신경망 최적화 방법)

  • 이현진;박혜영
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.136-147
    • /
    • 2003
  • To achieve an optimal performance for a given problem, we need an integrative process of the parameter optimization via learning and the structure optimization via model selection. In this paper, we propose an efficient optimization method for improving generalization performance by considering the property of each sub-method and by combining them with common theoretical properties. First, weight parameters are optimized by natural gradient teaming with adaptive regularization, which uses a diverse error function. Second, the network structure is optimized by eliminating unnecessary parameters with natural pruning. Through iterating these processes, candidate models are constructed and evaluated based on the Bayesian Information Criterion so that an optimal one is finally selected. Through computational experiments on benchmark problems, we confirm the weight parameter and structure optimization performance of the proposed method.

  • PDF

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

Optimization study of a clustering algorithm for cosmic-ray muon scattering tomography used in fast inspection

  • Hou, Linjun;Huo, Yonggang;Zuo, Wenming;Yao, Qingxu;Yang, Jianqing;Zhang, Quanhu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.208-215
    • /
    • 2021
  • Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology with unique advantages. As the performance of its image reconstruction algorithm has a crucial influence on the imaging quality, researches on this algorithm are of great significance to the development and application of this technology. In this paper, a fast inspection algorithm based on clustering analysis for the identification of the existence of nuclear materials is studied and optimized. Firstly, the principles of MST technology and a binned clustering algorithm were introduced, and then several simulation experiments were carried out using Geant4 toolkit to test the effects of exposure time, algorithm parameter, the size and structure of object on the performance of the algorithm. Based on these, we proposed two optimization methods for the clustering algorithm: the optimization of vertical distance coefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed to validate the optimization effect, and the results showed that these two optimization methods could significantly enhance the distinguishing ability of the algorithm for different materials, help to obtain more details in practical applications, and was therefore of great importance to the development and application of the MST technology.