• 제목/요약/키워드: Performance demand forecasting

검색결과 109건 처리시간 0.031초

수요 특성이 계층적 수요예측법의 퍼포먼스에 미치는 영향 : 해군 수리부속 사례 연구 (The Impact of Demand Features on the Performance of Hierarchical Forecasting : Case Study for Spare parts in the Navy)

  • 문성민
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.101-114
    • /
    • 2012
  • The demand for naval spare parts is intermittent and erratic. This feature, referred to as non-normal demand, makes forecasting difficult. Hierarchical forecasting using an aggregated time series can be more reliable to predict non-normal demand than direct forecasting. In practice the performance of hierarchical forecasting is not always superior to direct forecasting. The relative performance of the alternative forecasting methods depends on the demand features. This paper analyses the influence of the demand features on the performance of the alternative forecasting methods that use hierarchical and direct forecasting. Among various demand features variability, kurtosis, skewness and equipment groups are shown to significantly influence on the performance of the alternative forecasting methods.

간헐적 수요예측을 위한 이항가중 지수평활 방법 (A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting)

  • 하정훈
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측 (Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine)

  • 김수현;선영규;이동구;심이삭;황유민;김현수;김형석;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.127-133
    • /
    • 2019
  • 미래에 스마트 그리드 도입을 위해 전력수요예측은 중요한 연구 분야 중 하나이다. 하지만 전력데이터는 많은 외부적 요소들에 영향을 받기 때문에 예측하기 어렵다. 기존의 전력수요예측 방법들은 가공되지 않은 전력데이터를 그대로 이용하기 때문에 정확도 높은 예측을 하는데 한계가 있어왔다. 본 논문에서는 가공되지 않은 전력데이터를 이용하는 전력수요예측의 문제를 해결하기 위해 확률기반 학습알고리즘을 제안한다. 확률 모델은 전력데이터의 확률적 특성을 분석하기에 적합하다. 제안한 모델의 중기 전력수요예측 성능을 비교하기 위해 신경망 네트워크 중 하나인 순환신경망과 성능 비교를 해보았다. 매사추세츠 대학에서 제공한 전력데이터를 이용하여 성능 비교를 한 결과 본 논문에서 제안한 확률기반 학습알고리즘이 중기 수요예측에 더 좋은 성능을 나타냄을 확인하였다.

수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측 (Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease)

  • 이근철;최성훈
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

Support Vector Regression에 기반한 전력 수요 예측 (Electricity Demand Forecasting based on Support Vector Regression)

  • 이형로;신현정
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Developing Optimal Demand Forecasting Models for a Very Short Shelf-Life Item: A Case of Perishable Products in Online's Retail Business

  • Wiwat Premrudikul;Songwut Ahmornahnukul;Akkaranan Pongsathornwiwat
    • Journal of Information Technology Applications and Management
    • /
    • 제30권3호
    • /
    • pp.1-13
    • /
    • 2023
  • Demand forecasting is a crucial task for an online retail where has to manage daily fresh foods effectively. Failing in forecasting results loss of profitability because of incompetent inventory management. This study investigated the optimal performance of different forecasting models for a very short shelf-life product. Demand data of 13 perishable items with aging of 210 days were used for analysis. Our comparison results of four methods: Trivial Identity, Seasonal Naïve, Feed-Forward and Autoregressive Recurrent Neural Networks (DeepAR) reveals that DeepAR outperforms with the lowest MAPE. This study also suggests the managerial implications by employing coefficient of variation (CV) as demand variation indicators. Three classes: Low, Medium and High variation are introduced for classify 13 products into groups. Our analysis found that DeepAR is suitable for medium and high variations, while the low group can use any methods. With this approach, the case can gain benefit of better fill-rate performance.

데이터 가중 성능을 갖는 GMDH 알고리즘 및 전력 수요 예측에의 응용 (GMDH Algorithm with Data Weighting Performance and Its Application to Power Demand Forecasting)

  • 신재호;홍연찬
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.631-636
    • /
    • 2006
  • In this paper, an algorithm of time series function forecasting using GMDH(group method of data handling) algorithm that gives more weight to the recent data is proposed. Traditional methods of GMDH forecasting gives same weights to the old and recent data, but by the point of view that the recent data is more important than the old data to forecast the future, an algorithm that makes the recent data contribute more to training is proposed for more accurate forecasting. The average error rate of electric power demand forecasting by the traditional GMDH algorithm which does not use data weighting algorithm is 0.9862 %, but as the result of applying the data weighting GMDH algorithm proposed in this paper to electric power forecasting demand the average error rate by the algorithm which uses data weighting algorithm and chooses the best data weighting rate is 0.688 %. Accordingly in forecasting the electric power demand by GMDH the proposed method can acquire the reduced error rate of 30.2 % compared to the traditional method.

Generalized Replacement Demand Forecasting to Complement Diffusion Models

  • Chung, Kyu-Suk;Park, Sung-Joo
    • 대한산업공학회지
    • /
    • 제14권1호
    • /
    • pp.103-117
    • /
    • 1988
  • Replacement demand plays an important role to forecast the total demand of durable goods, while most of the diffusion models deal with only adoption data, namely initial purchase demand. This paper presents replacement demand forecasting models incorporating repurchase rate, multi-ownership, and dynamic product life to complement the existing diffusion models. The performance of replacement demand forecasting models are analyzed and practical guidelines for the application of the models are suggested when life distribution data or adoption data are not available.

  • PDF

앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가 (Evaluation of short-term water demand forecasting using ensemble model)

  • 소병진;권현한;구자용;나봉길;김병섭
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.