• Title/Summary/Keyword: Performance benchmark

Search Result 845, Processing Time 0.023 seconds

24th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability (24th ITTC 손상선박 안정성 수치해석 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Lee, Kyung-Jung;Kyoung, Jo-Hyun;Kim, Young-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.435-447
    • /
    • 2005
  • The 24th ITTC Specialists Committee on Stability in Waves is conducting an international benchmark study where numerical methods for the calculation of ship motion in damaged condition are compared on the basis of specified tests in order to assess the present state of the art in this field. The study is finished and some results are presented in this paper providing an initial insight into the status of damage models and numerical methods and a collective assessment of their performance. The preliminary analysis has shown that current methods are satisfactory, capturing the fundamental physical performance of damaged ships in specified conditions.

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

A Design and Implementation of 32-bit RISC-V RV32IM Pipelined Processor in Embedded Systems (임베디드 환경에서의 32-bit RISC-V RV32IM 파이프라인 프로세서 설계 및 구현)

  • Subin Park;Yongwoo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.81-86
    • /
    • 2023
  • Recently, demand for embedded systems requiring low power and high specifications has been increasing, and RISC-V processors are being widely applied. RISC-V, a RISC-based open instruction set architecture (ISA), has been developed and researched by UC Berkeley and other researchers since 2010. RV32I ISA is sufficient to support integer operations such as addition and subtraction instructions, but M-extension should be defined for multiplication and division instructions. This paper proposes an RV32I, RV32IM processor, and indicates benchmark performance scores compared to an existing processor. Additionally, A non-stalling method was proposed to support a 2-stage pipelined DSP multiplier to the 5-stage pipelined RV32IM processor. Proposed RV32I and RV32IM processors satisfied a maximum operating frequency of 50 MHz on Artix-7 FPGA. The performance of the proposed processors was verified using benchmark programs from Dhrystone and Coremark. As a result, the Coremark benchmark results of the proposed processor showed that it outperformed the existing RV32IM processor by 23.91%.

  • PDF

A Benchmark Test of Spatial Big Data Processing Tools and a MapReduce Application

  • Nguyen, Minh Hieu;Ju, Sungha;Ma, Jong Won;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.405-414
    • /
    • 2017
  • Spatial data processing often poses challenges due to the unique characteristics of spatial data and this becomes more complex in spatial big data processing. Some tools have been developed and provided to users; however, they are not common for a regular user. This paper presents a benchmark test between two notable tools of spatial big data processing: GIS Tools for Hadoop and SpatialHadoop. At the same time, a MapReduce application is introduced to be used as a baseline to evaluate the effectiveness of two tools and to derive the impact of number of maps/reduces on the performance. By using these tools and New York taxi trajectory data, we perform a spatial data processing related to filtering the drop-off locations within Manhattan area. Thereby, the performance of these tools is observed with respect to increasing of data size and changing number of worker nodes. The results of this study are as follows 1) GIS Tools for Hadoop automatically creates a Quadtree index in each spatial processing. Therefore, the performance is improved significantly. However, users should be familiar with Java to handle this tool conveniently. 2) SpatialHadoop does not automatically create a spatial index for the data. As a result, its performance is much lower than GIS Tool for Hadoop on a same spatial processing. However, SpatialHadoop achieved the best result in terms of performing a range query. 3) The performance of our MapReduce application has increased four times after changing the number of reduces from 1 to 12.

Performance Analysis of Flash Translation Layer using TPC-C Benchmark (플래시 변환 계층에 대한 TPC-C 벤치마크를 통한 성능분석)

  • Park, Sung-Hwan;Jang, Ju-Yeon;Suh, Young-Ju;Park, Won-Joo;Park, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.201-205
    • /
    • 2008
  • The flash memory is widely used as a main storage of embedded devices. It is adopted as a storage of database as growing the capacity of the flash memory. We run TPC-C benchmark on various FTL algorithms. But, the database shows poor performance on flash memory because the characteristic of I/O requests is full random. In this paper, we show the performance of all existing FTL algorithms is very poor. Especially, the FTL algorithm known as good at small mobile equipment shows worst performance. In addition, the chip-inter leaving which is a technique to improve the performance of the flash memory doesn't work well. In this paper, we inform you the reason that we need a new FTL algorithm and the direction for the database in the future.

Statistical approach to a SHM benchmark problem

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • The approach to damage detection and localization adopted in this paper is based on a statistical comparison of models built from the response time histories collected at different stages during the structure lifetime. Some of these time histories are known to have been recorded when the structural system was undamaged. The consistency of the models associated to two different stages, both undamaged, is first recognized. By contrast, the method detects the discrepancies between the models from measurements collected for a damaged situation and for the undamaged reference situation. The damage detection and localization is pursued by a comparison of the SSE (sum of the squared errors) histograms. The validity of the proposed approach is tested by applying it to the analytical benchmark problem developed by the ASCE Task Group on Structural Health Monitoring (SHM). In the paper, the results of the benchmark studies are presented and the performance of the method is discussed.

Korean students' mathematics achievement according to the TIMSS-R international benchmarks - focused on the relationship with mathematics curriculum and text - (TIMSS-R 국제성취수준에 따른 우리나라 학생들의 수학 성취도 분석-교육과정, 교과서와의 관련성을 중심으로-)

  • 나귀수
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.383-401
    • /
    • 2003
  • This study intends to examine the characteristics of Korean students' mathematics achievement according to the TIMSS-R International Benchmarks in the relation with mathematics curriculum and text. The concrete contents of this study are as followings. First, we consider the Korean students' mathematical abilities according to the TIMSS-R international benchmarks classified into Top 10% Benchmark, Upper Quarter Benchmark, Median Benchmark, and Lower Quarter Benchmark. Second, we examine the precent correct and the error-types of Korean students on the anchor items of such benchmarks. From these examinations, we grasp the mathematical titles that Korean students showed insufficient performance and lead the educational implications.

  • PDF

Uncertainty analysis of UAM TMI-1 benchmark by STREAM/RAST-K

  • Jaerim Jang;Yunki Jo;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1562-1573
    • /
    • 2024
  • This study rigorously examined uncertainty in the TMI-1 benchmark within the Uncertainty Analysis in Modeling (UAM) benchmark suite using the STREAM/RAST-K two-step method. It presents two pivotal advancements in computational techniques: (1) Development of an uncertainty quantification (UQ) module and a specialized library for the pin-based pointwise energy slowing-down method (PSM), and (2) Application of Principal Component Analysis (PCA) for UQ. To evaluate the new computational framework, we conducted verification tests using SCALE 6.2.2. Results demonstrated that STREAM's performance closely matched SCALE 6.2.2, with a negligible uncertainty discrepancy of ±0.0078% in TMI-1 pin cell calculations. To assess the reliability of the PSM covariance library, we performed verification tests, comparing calculations with Calvik's two-term rational approximation (EQ 2-term) covariance library. These calculations included both pin-based and fuel assembly (FA-wise) computations, encompassing hot zero-power and hot full-power operational conditions. The uncertainties calculated using both the EQ 2-term and PSM resonance treatments were consistent, showing a deviation within ±0.054%. Additionally, the data compression process yielded compression ratios of 88.210% and 92.926% for on-the-fly and data-saving approaches, respectively, in TMI fuel assembly calculations. In summary, this study provides a comprehensive explanation of the PCA process used for UQ calculations and offers valuable insights into the robustness and reliability of newly developed computational methods, supported by rigorous verification tests.

Performance Evaluation of Transaction Processing in Main Memory DBMS (주기억장치 DBMS의 트랜잭션 성능 평가)

  • Lee, Kyu-Woong
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.559-566
    • /
    • 2005
  • ALTIBASE is the relational main memory DBMS that enables us to develop the high performance and fault tolerant applications. It guarantees the short and predictable execution time as well as the basic functionality of conventional disk-based DBMS. We present the overview of system architecture and the performance analysis with respect to the various design choices. The assorted experiments are performed under the various environments. The results of TPC-H and Wisconsin benchmark tests are described. We illustrate the various performance comparisons under the various index mechanisms, the replication models, the transaction durabilities, and the application structures. A performance study shows the ALTIBASE system can be applied to the wide area of industrial DBMS fields.

  • PDF

Performance Analysis of Block Allocation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 할당 성능 분석)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.355-357
    • /
    • 2014
  • Linux environment that is commonly used at embedded systems, supports various file systems as Ext2, FAT, NTFS, ets. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block allocation and block free time. On these factors, block free time is not so different according to the type of file systems. This thesis performs the performance benchmark of a Ext2, FAT and NTFS file systems about block allocation performance. As the result, it is discussed that what file system is better at which case.

  • PDF