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Abstract
Spatial data processing often poses challenges due to the unique characteristics of spatial data and this 

becomes more complex in spatial big data processing. Some tools have been developed and provided to users; 
however, they are not common for a regular user. This paper presents a benchmark test between two notable 
tools of spatial big data processing: GIS Tools for Hadoop and SpatialHadoop. At the same time, a MapReduce 
application is introduced to be used as a baseline to evaluate the effectiveness of two tools and to derive the 
impact of number of maps/reduces on the performance. By using these tools and New York taxi trajectory data, 
we perform a spatial data processing related to filtering the drop-off locations within Manhattan area. Thereby, 
the performance of these tools is observed with respect to increasing of data size and changing number of worker 
nodes. The results of this study are as follows 1) GIS Tools for Hadoop automatically creates a Quadtree index in 
each spatial processing. Therefore, the performance is improved significantly. However, users should be familiar 
with Java to handle this tool conveniently. 2) SpatialHadoop does not automatically create a spatial index for 
the data. As a result, its performance is much lower than GIS Tool for Hadoop on a same spatial processing. 
However, SpatialHadoop achieved the best result in terms of performing a range query. 3) The performance of 
our MapReduce application has increased four times after changing the number of reduces from 1 to 12.  
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1. Introduction

Big Data processing has posed challenges due to 
increasing complexity of digital data in terms of types and 
quantity while the performance of the computer has reached 
a certain limit. Some organizations are providing big data 
processing services such as Cloudera (https://www.cloudera.
com) or Hortonworks (https://hortonworks.com); however, 
these services still contain hindering factors such as cost and 
availability. Hadoop is a notable open source platform for 
big data processing released by Apache (https://apache.org), 
but it is still in development. Particularly, spatial big data 

poses unique statistical and computational challenges due 
to spatial data characteristics including dependency, spatial 
autocorrelation, anisotropy, heterogeneity, and multiscale 
and resolution (Jiang and Shekhar, 2017). Researchers and 
organizations around the world are attempting to overcome 
these challenges. Esri (http://www.esri.com) pioneered real-
world problem solving by using geographic information 
systems. They published a spatial big data processing 
toolbox named GIS Tools for Hadoop which provides most 
of the basic functions dealing with spatial data processing. 
Source codes and additional information can be found on 
Github (https://github.com/Esri/gis-tools-for-hadoop). To 
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use GIS Tools for Hadoop, users need to install Hive (Thusoo 
et al., 2009) which is a data warehouse system for querying 
and analyzing large datasets in Hadoop. In academia, 
SpatialHadoop was released by Minnesota University 
(Eldawy and Mokbel, 2013). This tool inherits basic spatial 
data processing functions from the Esri Geometry API 
(Application Program Interface) library and uses Pig (https://
pig.apache.org) to generate MapReduce applications. In 
SpatialHadoop, only some specific spatial operations have 
been developed in order to support researches which utilize 
k-NN to optimize filtering based on scope, or redefine 
the Pig Latin (Olston et al., 2008) to support spatial joints 
(Eldawy and Mokbel, 2015b). Besides, another tool is 
Hadoop-GIS was developed by Emory University (Aji et 
al., 2013) to deal with spatial big data processing. However, 
Hadoop-GIS only supports data up to two dimensional and 
two query types: rectangle range query and spatial joins 
(Garcia-Garcia et al., 2017). By evaluating the performance, 
the advantages and disadvantages of the tools can be figured 
out. Therefore, the regular users can choose the appropriate 
tool for their specific tasks. Researches on similar interests 
are listed: Performance evaluation of SpatialHadoop for big 
data was implemented in Isfahan University of Technology 
Isfahan, Iran (Maleki et al., 2016), Lawrence Berkeley 
National Laboratory conducted performance evaluation of a 
MongoDB and Hadoop platform for scientific data analysis 
(Dede et al., 2013), and Performance comparisons of spatial 
data processing techniques for a large-scale mobile phone 
dataset were implemented in University of Tokyo, Japan 
(Witayangkurn et al., 2012). 

This paper presents an experiment to evaluate the 
performance of two tools: GIS Tools for Hadoop running 
on top of Hive and SpatialHadoop running on top of Pig. 
The experiment is carried out by implementing a spatial data 
processing related to filtering the drop-off locations within 
Manhattan area. Furthermore, a MapReduce application is 
introduced as a baseline to assess the results achieved by two 
tools. We tested this application with a different number of 
reduces to observe the changes in performance compared to 
using the default Hadoop parameters. Optimizing number of 
maps and reduces is not covered in this study.

2. Background

Hadoop: The Apache Hadoop is an open source software 
that provides reliable, scalable, and distributed computing. 
Hadoop has four main components: Hadoop common, Hadoop 
HDFS (Hadoop Distributed File System), Hadoop YARN 
(Yet Another Resource Negotiator), and Hadoop MapReduce. 
A basic structure of Hadoop is introduced in Fig. 1.

GIS Tools for Hadoop: GIS Tools for Hadoop is an open 
source toolkit that provides spatial analysis tools for big 
data(Jonathan, 2017). GIS Tools for Hadoop is composed 
3 main components: Esri Geometry API for Java, Spatial 
Framework for Hadoop, and Geoprocessing Tools for 
Hadoop as shown in Fig. 2.  

· �Esri Geometry API for Java: This library includes 
geometry objects, spatial operations, and spatial indexing 
(Quadtree). SpatialHadoop also used this library in the 
core spatial function processing (Whitman et al., 2014).

· �Spatial Framework for Hadoop: This library includes 
user-defined functions (UDFs) that extends Hive and are 
built upon capabilities of the Esri Geometry API.

·Geoprocessing Tools for Hadoop: Using these tools, users 

Fig. 1. A basic Hadoop structure  

Fig. 2. GIS Tools for Hadoop structure
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two options. Option 1: Submitting commands directly from 
terminal console complying the syntax of SpatialHadoop. 
Option 2: Submitting a Pig Latin script from the terminal. 
In this experiment, we used option 2 to avoid re-entering 
the commands. Fig. 6 shows a Pig Latin script used in this 
experiment. 

 Through the script, Pig directly reads the data from HDFS 
(Shvachko et al., 2010) and writes the result back to HDFS. 
This process is similar to how a MapReduce application 
works, but it works differently when compared to Hive. 
Hive organized and indexed data in directories which are 
stored in HDFS to help it works like a DBMS (Database 
Management System). Since Pig does not support spatial 
queries, SpatialHadoop has customized Pig by adding Pigeon 
(Eldawy and Mokbel, 2014) library.

So, users can manipulate these tools by entering single 
commands, entering a script or using Java. Eventually, the 
MapReduce applications are created and submitted to the 
Hadoop system. The differences between these tools are 
the number of maps and reduces created and how the data 
is processed in each map or reduce. By default, Hadoop 
determines the number of maps based on the number of DFS 

can connect data between Hadoop and ArcGIS, submit 
workflow jobs, and convert data to and from JSON.

Users can use GIS Tool for Hadoop following two options. 
Option 1: Entering the SQL statement directly from Hive 
shell window as shown in Fig. 3. In this option, the user will 
enter a sequence of statements to complete a task which is 
similar to this experiment. This approach is less user-friendly 
due to the re-entering of commands when an error occurs. 

Option 2: Hive provides a protocol where the user can 
submit a sequence of commands through Java language 
to Hive server. To enable this feature, the user needs to 
start a second Hive server on the master node and create a 
connection before submitting SQL statements at the client 
side. Fig. 4 shows how the Hive connection was created by 
using Java. By this approach, users can save the entire process 
and debug the SQL statements through a Java-powered IDE 
(Integrated Development Environment) such as Netbeans 
(https://netbeans.org). 

SpatialHadoop: SpatialHadoop is a comprehensive 
extension to Hadoop that injects spatial data awareness 
in each Hadoop layer, namely, the language, storage, 
MapReduce, and operations layers (Eldawy and Mokbel, 
2015b). Fig. 5 describes the structure of SpatialHadoop. 

When using SpatialHadoop, the user can choose one of 

Fig. 3. Submit a HiveSQL to Hive server through Hive shell Fig. 5. Structure of SpatialHadoop 

Fig. 6. Pig Latin script  

Fig. 4. Create a Hive connection by Java  
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(Distributed File System) blocks in the input file. If the user 
expects 10TB of input data and has 128MB DFS blocks, 
they will end up with 82000 maps (Apache, 2014). In our 
experiment, when using 0.5GB input data and 128MB DFS 
blocks (default), only 4 maps were created. Hive determines 
the number of maps in the same way of Hadoop while Pig 
cannot control map parallelism (Gates and Dai, 2016). In the 
reduce phase, if no setting is specified, Hadoop only creates 
one reduce. Hive and Pig determine the number of reduces 
based on the size of input data and ‘hive.exec.reducers.
bytes.per.reducer’ or ‘pig.exec.reducers.bytes.per.reducer’ 
parameter. By default, if input data is 2GB, then 2 reduces 
will be requested by Hive or Pig. Sometimes, Pig does not 
implement the reduce phase, the whole process is done at 
the map phase (Gates et al., 2009). The number of maps and 
reduces can affect the performance since they can be run on 
the parallel mechanism (Fig. 7) by YARN (Vavilapalli et 
al., 2013). YARN is a component of Hadoop which creates 
virtual machines or containers on worker nodes to assign map 
or reduce tasks to them. A container can perform multiple 
map or reduce tasks, but if only one CPU (Central Processing 
Unit) is allocated to the container, the tasks will be performed 
sequentially. By default, YARN assigns only one core and 
1GB of memory for each container. If a worker node has 4 
cores CPU, only 4 tasks can be performed at the same time. 

3. Experiment

3.1 Data set

The data used in this study is New York Taxi Trajectory 

data. The original data file is downloaded from NYC (the 
official website of the city of New York) Taxi and Limousine 
Commission (http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml) with the size 250MB for one month (Fig. 
8). The data structure consists of 21 data fields, in which only 
3 data fields (Table 1) are used for reading, and all fields are 
preserved during the writing the result. From this dataset, 
we created 3 new datasets to measure the performance by 
increasing data size: 0.5GB, 1GB, and 2GB.

To obtain the Manhattan City boundary map, the US 
administrative unit data is downloaded from NYC in 
shapefile format (http://www1.nyc.gov/nyc-resources/agenc 
ies.page). This data is converted to WKT (http://www.
opengeospatial.org/standards/wkt-crs) and GeoJSON (http://
geojson.org) format since SpatialHadoop read a geometry 
object in WKT format and our MapReduce application read 
a geometry object in GeoJSON format. In order to provide 
another choice for the users in future, reading a geometry in 
GeoJSON format was tried. 
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Fig. 7. MapReduce workflow of YARN 

Fig. 8. New York taxi trajectory data

Field Name Description Purpose

Dropoff_
longitude

Longitude where the 
meter was timed off. Define Point Object

Dropoff_
latitude

Latitude where the 
meter was timed off. Define Point Object

Dropoff_
datetime

The date and time 
when the meter was 

disengaged.
Define the key in 

MapReduce function

Table 1. The fields used for data reading
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tools for Hadoop(T2); and MapReduce(T3). The workflow is 
illustrated in Fig. 10. 

‘Point in Polygon’ process can be implemented in one of 
following ways: ‘contain’ checking, ‘within’ checking, or 
‘intersect’ checking. The impact of the checking algorithms 
on the performance test will not be covered in this study. 
We assume that using a same algorithm will not affect to 
the comparison of performance and chose ‘within’ checking 
to conduct our experiment. In MapReduce application, we 
used GeoTools (http://geotools.org) library which provided 
‘within’ function for ‘Point in Polygon’ process. The input of 
this function consists of a point object (latitude, longitude) 
and a polygon object in GeoJSON format. The tools were 

3.2. Cluster configuration

Number of nodes:  4 computers were used in this experiment 
and their information are described in Table 2. The most 
powerful computer was set as a master node, while the other 
computers with the same configuration were set as worker 
nodes. By using the same 3 computers for worker node, the 
performance comparison was conducted objectively with 
respect to increasing number of worker nodes.

Parameters setting: All tests are implemented with the 
default configuration of Hadoop, Hive, and Pig. Some 
parameters in Table 2 are used in result analysis.

3.3. Implementation

In this study, we aim to filter out the taxi drop-off in 
Manhattan area (Fig. 9) from New York taxi trajectory data. 
To resolve the problem, three different tools were applied 
to process the filtering problem: SpatialHadoop(T1); GIS 

Fig. 9. Manhattan boundary and bounding box

Master Node (1) Worker Node (3)

CPU Intel Core i7-2600 @ 
3.4GHz x 8

Intel Core i5-2300 @ 
2.80Ghz x 4

Memory 16 GB 16 GB

Table 2. Hardware specifications

Parameter Value Description

Hadoop
yarn.scheduler.
minimum-allocation-
vcores

1
The minimum allocation for 
every container request at the 
ResourceManager.

yarn.scheduler.minimum-
allocation-mb 1024

The minimum allocation for 
every container request at the 
ResourceManager, in MBs.

mapreduce.job.reduces 1 The default number of reduce 
tasks per job.

dfs.block.size (MB) 128
Block size in HDFS. If your 
file is 1GB, Hadoop will create 
8 blocks in HDFS.

Pig
pig.exec.reducers.bytes.
per.reducer (GB) 1 Defines the number of input 

bytes per reduce

mapred.min.split.size -1 Sets the minimum split size 
defaults to dfs.blocksize

hive.exec.reduces.bytes.
per.reducer (GB) 1 If the input size is 2G, Hive 

will request 2 reduces.

Table 3. Some of default parameter setting

Fig. 10. Flowchart for experiment  
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tested based on the changing data size and changing number 
of worker nodes. For each test, repetition is necessary to 
ensure reliability. Besides, the impact of network factor is 
considered since Hadoop distributes tasks and aggregates 
results between nodes through network connection. Howe-
ver, this experiment was carried out on a small cluster (4 
nodes) and LAN network, so the impact of network factor 
was neglected.

A spatial query on a large datasets are time-consuming 
and some studies have focused on building optimal solutions 
such as improving the performance of GIS polygon overlay 
computation with MapReduce for spatial big data processing 
(Wang et al., 2015), High-performance spatial query pro-
cessing on big taxi trip data using GPGPU (General-Purpose 
computing on Graphics Processing Units) (Zhang et al., 
2014), A spatial data partitioning framework for scalable 
query processing (Vo et al., 2014). GIS Tools for Hadoop used 
a Quadtree index to speed up the performance (Whitman et 
al., 2014), SpatialHadoop used two-level design to build a 
grid index, R-tree, and R+-tree (Eldawy and Mokbel, 2015a). 
However, creating the index in SpatialHadoop is not a simple 
task because the user needs to implement various steps 
such as using Java to customize the data format, compiling 
Java code in *.jar file format, and loading this file for every 
data reading/writing. Since this task is more suitable for a 
developer than for a regular user, the index was not created 
when using SpatialHadoop. Our MapReduce application is 
introduced as a baseline for this experiment without any data 
indexing strategy. Due to the mechanism of parallel data 
processing, the changing of performance can be observed 
when the number of maps and reduces are changed. Hadoop 
decides the number of maps based on input size and DFS 
block as mentioned. No specific number is given for the 
best number of reduces except the maximum number of 
999 reduces. Therefore, some other tests on our MapReduce 
application with respect to changing number of reduces are 
implemented based on our research experience.

4. Evaluation

The performance of the tools were evaluated in three 
different scenarios: by changing the data size; by changing 

the number of worker node; and by changing tasks. The taxi 
drop-off filtering result is depicted in Fig. 11.

4.1. Evaluation based on the changing data size 

In Fig. 12, the processing time on T3 increased 
proportionally to the data size as no optimization was 
implemented. This is similar to T1 when the data size is 
increased from 0.5 to 1 GB; however, only a slight increase 
occurred when data size is increased from 1 to 2 GB. The 
time processing on T2 was remarkably lower than the other 
tools, however it slightly increased proportional to data size. 
The remarkable result can be deduced from leveraging the 
non-sequential data reading/writing mechanism of database 
management system from Hive and using Quadtree index in 
the spatial data processing.

4.2. �Evaluation based on the changing number 

of worker nodes

Fig. 13 shows that when testing with 0.5GB data, the 
number of nodes almost did not affect the performance. 
In other words, this amount of data is not large enough to 
affect the performance of a Hadoop cluster. Because when 

Fig. 11. Results after filtering process

Fig. 12. The performance with respect to filtering by 
boundary, increasing data size, and using 2 worker nodes
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using 0.5GB, only 4 maps and 1 reduce were created at max. 
Our worker node has 4 cores and 16GB memory, so the job 
is always done with only one worker node specified. This 
test was repeated on 1GB data and Fig. 14 shows that when 
the number of worker nodes is increased from 1 to 2, the 
changing performance on T1 and T2 is noticeable. This can be 
explained as when loading 1GB data, there are always 8 maps 
created in map phase. These maps can be performed at the 
same time with 8 cores and 8 GB of memory (2 nodes contain 
8 cores and 32 GB of memory). At the reduce phase, Pig did 
not implement any reduce task in this case (Fig. 15). In other 
words, the whole process was done at the map phase (8 map 
tasks). So, the performance has increased when compared to 
using only one node with 4 map tasks created. T2 created two 
reduce tasks due to the fact that our data file is 1031183828 
byte (> 1000000000 byte or 1GB). With 2 reduces running 
at the same time, the performance of T2 was improved. 
Similarly, there is no improvement when using 1GB data and 
increasing the number of worker nodes from 2 to 3.

On T3, since there is always one reduce task created, the 
performance did not changed when the number of worker  
nodes are changed. Fig. 16 describes clearly this inadequacy 
on the T3.

From the inadequacy mentioned, an adjustment was 
applied on T3 by changing the number of reduce tasks. In 
our experience, the number of reduce tasks depends on the 
outcome of the map phase and the resources of Hadoop 
cluster. If too many reduces are created, the output file 
will be split into many small parts which are equivalent 
to the number of reductions created. This is detrimental to 
subsequent processing. The purpose of this test is to clarify 
that the user should not use all default Hadoop parameters. 
Fig. 17 showed that the performance on T3 has improved 
significantly as the number of reduce tasks was altered from 
1 to 12.

Fig. 13. The performance with respect to filtering by 
boundary, increasing the number of worker nodes, and 

using 0.5GB data

Fig. 15. Map Reduce plan on T1 after optimization by Pig 
optimizer 

Fig. 16. The performance on T3 with respect to filtering 
by boundary,  increasing the number of worker nodes, and 

increasing the data size

Fig. 14. The performance on T1 and T2 with respect to 
filtering by boundary, increasing the number of worker 

nodes, and increasing the data size

T1

T2
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4.3. Evaluation based on the changing task

In fact, filtering taxi drop-off location by Manhattan 
bounding box can be done through a range query by 
comparing coordinates. In this case, T1 has achieved the best 
performance (Fig. 18) as using SpatialFileSplitter (Eldawy 
and Mokbel, 2015b) with a range filter to select the blocks 
overlapping with the query area, while T2 achieved excellent 
performance with respect to filtering by Manhattan boundary 
(Fig. 19).

5. Conclusion

This paper presented a benchmark test between two notable 
tools of spatial big data processing: GIS Tools for Hadoop 
and SpatialHadoop with respect to filtering taxi drop-off 
location within Manhattan area, while increasing data size 
and changing number of worker nodes. GIS Tools for Hadoop 
is superior to SpatialHadoop as it automatically generates a 
Quadtree index in each spatial query. In addition, GIS Tools 
for Hadoop leveraged Hive’s advantages to speed up data 
access in HDFS. Therefore, its performance has improved 
significantly. However, users should be familiar Java to 
handle this tool conveniently. SpatialHadoop supported 
an R-tree index but users must create this index manually 
through various steps. In the test of filtering by Manhattan 
boundary, the performance of SpatialHadoop is much lower 
than GIS Tool for Hadoop as no index was used. In the case 
of filtering by Manhattan bounding box, SpatialHadoop 
achieved the best performance in term of performing an 
optimal range query. Therefore, in some cases of estimation 
or preliminary processing, users can use SpatialHadoop as a 
second option. The number of maps and reduces affected to 
the performance of a MapReduce application. Using only one 
reduce was not effective. Thus, users should alter the number 
of reduce tasks flexibly to improve the performance. Future 
work will test the performance on indexed data and measure 
the difference between IO disk and network performance. 
Further, a framework for parallel processing of taxi trajectory 
data can be developed.
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