
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
Vol. 35, No. 5, 405-414, 2017
https://doi.org/10.7848/ksgpc.2017.35.5.405

A Benchmark Test of Spatial Big Data Processing Tools and a
MapReduce Application

Nguyen, Minh Hieu1)ㆍJu, Sungha2)ㆍMa, Jong Won3)ㆍHeo, Joon4)

Abstract
Spatial data processing often poses challenges due to the unique characteristics of spatial data and this

becomes more complex in spatial big data processing. Some tools have been developed and provided to users;
however, they are not common for a regular user. This paper presents a benchmark test between two notable
tools of spatial big data processing: GIS Tools for Hadoop and SpatialHadoop. At the same time, a MapReduce
application is introduced to be used as a baseline to evaluate the effectiveness of two tools and to derive the
impact of number of maps/reduces on the performance. By using these tools and New York taxi trajectory data,
we perform a spatial data processing related to filtering the drop-off locations within Manhattan area. Thereby,
the performance of these tools is observed with respect to increasing of data size and changing number of worker
nodes. The results of this study are as follows 1) GIS Tools for Hadoop automatically creates a Quadtree index in
each spatial processing. Therefore, the performance is improved significantly. However, users should be familiar
with Java to handle this tool conveniently. 2) SpatialHadoop does not automatically create a spatial index for
the data. As a result, its performance is much lower than GIS Tool for Hadoop on a same spatial processing.
However, SpatialHadoop achieved the best result in terms of performing a range query. 3) The performance of
our MapReduce application has increased four times after changing the number of reduces from 1 to 12.

Keywords: Spatial Big Data, Taxi Trajectory Data, Hadoop, Benchmark Test.

405

ISSN 1598-4850(Print)
ISSN 2288-260X(Online)
 Original article

Received 2017. 9. 29, Revised 2017. 10. 12, Accepted 2017. 10. 31
1) Member, Dep. of Civil Engineering, Yonsei University (E-mail: hieuintelvn@gmail.com)
2) Dep. of Civil Engineering, Yonsei University (E-mail: jsh4907@yonsei.ac.kr)
3) Dep. of Civil Engineering, Yonsei University (E-mail: mjw1231@yonsei.ac.kr)
4) Corresponding Author, Member, Dep. of Civil Engineering, Yonsei University (E-mail: jheo@yonsei.ac.kr)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction

Big Data processing has posed challenges due to
increasing complexity of digital data in terms of types and
quantity while the performance of the computer has reached
a certain limit. Some organizations are providing big data
processing services such as Cloudera (https://www.cloudera.
com) or Hortonworks (https://hortonworks.com); however,
these services still contain hindering factors such as cost and
availability. Hadoop is a notable open source platform for
big data processing released by Apache (https://apache.org),
but it is still in development. Particularly, spatial big data

poses unique statistical and computational challenges due
to spatial data characteristics including dependency, spatial
autocorrelation, anisotropy, heterogeneity, and multiscale
and resolution (Jiang and Shekhar, 2017). Researchers and
organizations around the world are attempting to overcome
these challenges. Esri (http://www.esri.com) pioneered real-
world problem solving by using geographic information
systems. They published a spatial big data processing
toolbox named GIS Tools for Hadoop which provides most
of the basic functions dealing with spatial data processing.
Source codes and additional information can be found on
Github (https://github.com/Esri/gis-tools-for-hadoop). To

406

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, 405-414, 2017

use GIS Tools for Hadoop, users need to install Hive (Thusoo
et al., 2009) which is a data warehouse system for querying
and analyzing large datasets in Hadoop. In academia,
SpatialHadoop was released by Minnesota University
(Eldawy and Mokbel, 2013). This tool inherits basic spatial
data processing functions from the Esri Geometry API
(Application Program Interface) library and uses Pig (https://
pig.apache.org) to generate MapReduce applications. In
SpatialHadoop, only some specific spatial operations have
been developed in order to support researches which utilize
k-NN to optimize filtering based on scope, or redefine
the Pig Latin (Olston et al., 2008) to support spatial joints
(Eldawy and Mokbel, 2015b). Besides, another tool is
Hadoop-GIS was developed by Emory University (Aji et
al., 2013) to deal with spatial big data processing. However,
Hadoop-GIS only supports data up to two dimensional and
two query types: rectangle range query and spatial joins
(Garcia-Garcia et al., 2017). By evaluating the performance,
the advantages and disadvantages of the tools can be figured
out. Therefore, the regular users can choose the appropriate
tool for their specific tasks. Researches on similar interests
are listed: Performance evaluation of SpatialHadoop for big
data was implemented in Isfahan University of Technology
Isfahan, Iran (Maleki et al., 2016), Lawrence Berkeley
National Laboratory conducted performance evaluation of a
MongoDB and Hadoop platform for scientific data analysis
(Dede et al., 2013), and Performance comparisons of spatial
data processing techniques for a large-scale mobile phone
dataset were implemented in University of Tokyo, Japan
(Witayangkurn et al., 2012).

This paper presents an experiment to evaluate the
performance of two tools: GIS Tools for Hadoop running
on top of Hive and SpatialHadoop running on top of Pig.
The experiment is carried out by implementing a spatial data
processing related to filtering the drop-off locations within
Manhattan area. Furthermore, a MapReduce application is
introduced as a baseline to assess the results achieved by two
tools. We tested this application with a different number of
reduces to observe the changes in performance compared to
using the default Hadoop parameters. Optimizing number of
maps and reduces is not covered in this study.

2. Background

Hadoop: The Apache Hadoop is an open source software
that provides reliable, scalable, and distributed computing.
Hadoop has four main components: Hadoop common, Hadoop
HDFS (Hadoop Distributed File System), Hadoop YARN
(Yet Another Resource Negotiator), and Hadoop MapReduce.
A basic structure of Hadoop is introduced in Fig. 1.

GIS Tools for Hadoop: GIS Tools for Hadoop is an open
source toolkit that provides spatial analysis tools for big
data(Jonathan, 2017). GIS Tools for Hadoop is composed
3 main components: Esri Geometry API for Java, Spatial
Framework for Hadoop, and Geoprocessing Tools for
Hadoop as shown in Fig. 2.

· �Esri Geometry API for Java: This library includes
geometry objects, spatial operations, and spatial indexing
(Quadtree). SpatialHadoop also used this library in the
core spatial function processing (Whitman et al., 2014).

· �Spatial Framework for Hadoop: This library includes
user-defined functions (UDFs) that extends Hive and are
built upon capabilities of the Esri Geometry API.

·Geoprocessing Tools for Hadoop: Using these tools, users

Fig. 1. A basic Hadoop structure

Fig. 2. GIS Tools for Hadoop structure

A Benchmark Test of Spatial Big Data remove Processing Tools and a MapReduce Application

407

two options. Option 1: Submitting commands directly from
terminal console complying the syntax of SpatialHadoop.
Option 2: Submitting a Pig Latin script from the terminal.
In this experiment, we used option 2 to avoid re-entering
the commands. Fig. 6 shows a Pig Latin script used in this
experiment.

 Through the script, Pig directly reads the data from HDFS
(Shvachko et al., 2010) and writes the result back to HDFS.
This process is similar to how a MapReduce application
works, but it works differently when compared to Hive.
Hive organized and indexed data in directories which are
stored in HDFS to help it works like a DBMS (Database
Management System). Since Pig does not support spatial
queries, SpatialHadoop has customized Pig by adding Pigeon
(Eldawy and Mokbel, 2014) library.

So, users can manipulate these tools by entering single
commands, entering a script or using Java. Eventually, the
MapReduce applications are created and submitted to the
Hadoop system. The differences between these tools are
the number of maps and reduces created and how the data
is processed in each map or reduce. By default, Hadoop
determines the number of maps based on the number of DFS

can connect data between Hadoop and ArcGIS, submit
workflow jobs, and convert data to and from JSON.

Users can use GIS Tool for Hadoop following two options.
Option 1: Entering the SQL statement directly from Hive
shell window as shown in Fig. 3. In this option, the user will
enter a sequence of statements to complete a task which is
similar to this experiment. This approach is less user-friendly
due to the re-entering of commands when an error occurs.

Option 2: Hive provides a protocol where the user can
submit a sequence of commands through Java language
to Hive server. To enable this feature, the user needs to
start a second Hive server on the master node and create a
connection before submitting SQL statements at the client
side. Fig. 4 shows how the Hive connection was created by
using Java. By this approach, users can save the entire process
and debug the SQL statements through a Java-powered IDE
(Integrated Development Environment) such as Netbeans
(https://netbeans.org).

SpatialHadoop: SpatialHadoop is a comprehensive
extension to Hadoop that injects spatial data awareness
in each Hadoop layer, namely, the language, storage,
MapReduce, and operations layers (Eldawy and Mokbel,
2015b). Fig. 5 describes the structure of SpatialHadoop.

When using SpatialHadoop, the user can choose one of

Fig. 3. Submit a HiveSQL to Hive server through Hive shell Fig. 5. Structure of SpatialHadoop

Fig. 6. Pig Latin script

Fig. 4. Create a Hive connection by Java

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, 405-414, 2017

(Distributed File System) blocks in the input file. If the user
expects 10TB of input data and has 128MB DFS blocks,
they will end up with 82000 maps (Apache, 2014). In our
experiment, when using 0.5GB input data and 128MB DFS
blocks (default), only 4 maps were created. Hive determines
the number of maps in the same way of Hadoop while Pig
cannot control map parallelism (Gates and Dai, 2016). In the
reduce phase, if no setting is specified, Hadoop only creates
one reduce. Hive and Pig determine the number of reduces
based on the size of input data and ‘hive.exec.reducers.
bytes.per.reducer’ or ‘pig.exec.reducers.bytes.per.reducer’
parameter. By default, if input data is 2GB, then 2 reduces
will be requested by Hive or Pig. Sometimes, Pig does not
implement the reduce phase, the whole process is done at
the map phase (Gates et al., 2009). The number of maps and
reduces can affect the performance since they can be run on
the parallel mechanism (Fig. 7) by YARN (Vavilapalli et
al., 2013). YARN is a component of Hadoop which creates
virtual machines or containers on worker nodes to assign map
or reduce tasks to them. A container can perform multiple
map or reduce tasks, but if only one CPU (Central Processing
Unit) is allocated to the container, the tasks will be performed
sequentially. By default, YARN assigns only one core and
1GB of memory for each container. If a worker node has 4
cores CPU, only 4 tasks can be performed at the same time.

3. Experiment

3.1 Data set

The data used in this study is New York Taxi Trajectory

data. The original data file is downloaded from NYC (the
official website of the city of New York) Taxi and Limousine
Commission (http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml) with the size 250MB for one month (Fig.
8). The data structure consists of 21 data fields, in which only
3 data fields (Table 1) are used for reading, and all fields are
preserved during the writing the result. From this dataset,
we created 3 new datasets to measure the performance by
increasing data size: 0.5GB, 1GB, and 2GB.

To obtain the Manhattan City boundary map, the US
administrative unit data is downloaded from NYC in
shapefile format (http://www1.nyc.gov/nyc-resources/agenc
ies.page). This data is converted to WKT (http://www.
opengeospatial.org/standards/wkt-crs) and GeoJSON (http://
geojson.org) format since SpatialHadoop read a geometry
object in WKT format and our MapReduce application read
a geometry object in GeoJSON format. In order to provide
another choice for the users in future, reading a geometry in
GeoJSON format was tried.

408

Fig. 7. MapReduce workflow of YARN

Fig. 8. New York taxi trajectory data

Field Name Description Purpose

Dropoff_
longitude

Longitude where the
meter was timed off. Define Point Object

Dropoff_
latitude

Latitude where the
meter was timed off. Define Point Object

Dropoff_
datetime

The date and time
when the meter was

disengaged.
Define the key in

MapReduce function

Table 1. The fields used for data reading

A Benchmark Test of Spatial Big Data remove Processing Tools and a MapReduce Application

409

tools for Hadoop(T2); and MapReduce(T3). The workflow is
illustrated in Fig. 10.

‘Point in Polygon’ process can be implemented in one of
following ways: ‘contain’ checking, ‘within’ checking, or
‘intersect’ checking. The impact of the checking algorithms
on the performance test will not be covered in this study.
We assume that using a same algorithm will not affect to
the comparison of performance and chose ‘within’ checking
to conduct our experiment. In MapReduce application, we
used GeoTools (http://geotools.org) library which provided
‘within’ function for ‘Point in Polygon’ process. The input of
this function consists of a point object (latitude, longitude)
and a polygon object in GeoJSON format. The tools were

3.2. Cluster configuration

Number of nodes: 4 computers were used in this experiment
and their information are described in Table 2. The most
powerful computer was set as a master node, while the other
computers with the same configuration were set as worker
nodes. By using the same 3 computers for worker node, the
performance comparison was conducted objectively with
respect to increasing number of worker nodes.

Parameters setting: All tests are implemented with the
default configuration of Hadoop, Hive, and Pig. Some
parameters in Table 2 are used in result analysis.

3.3. Implementation

In this study, we aim to filter out the taxi drop-off in
Manhattan area (Fig. 9) from New York taxi trajectory data.
To resolve the problem, three different tools were applied
to process the filtering problem: SpatialHadoop(T1); GIS

Fig. 9. Manhattan boundary and bounding box

Master Node (1) Worker Node (3)

CPU Intel Core i7-2600 @
3.4GHz x 8

Intel Core i5-2300 @
2.80Ghz x 4

Memory 16 GB 16 GB

Table 2. Hardware specifications

Parameter Value Description

Hadoop
yarn.scheduler.
minimum-allocation-
vcores

1
The minimum allocation for
every container request at the
ResourceManager.

yarn.scheduler.minimum-
allocation-mb 1024

The minimum allocation for
every container request at the
ResourceManager, in MBs.

mapreduce.job.reduces 1 The default number of reduce
tasks per job.

dfs.block.size (MB) 128
Block size in HDFS. If your
file is 1GB, Hadoop will create
8 blocks in HDFS.

Pig
pig.exec.reducers.bytes.
per.reducer (GB) 1 Defines the number of input

bytes per reduce

mapred.min.split.size -1 Sets the minimum split size
defaults to dfs.blocksize

hive.exec.reduces.bytes.
per.reducer (GB) 1 If the input size is 2G, Hive

will request 2 reduces.

Table 3. Some of default parameter setting

Fig. 10. Flowchart for experiment

410

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, 405-414, 2017

tested based on the changing data size and changing number
of worker nodes. For each test, repetition is necessary to
ensure reliability. Besides, the impact of network factor is
considered since Hadoop distributes tasks and aggregates
results between nodes through network connection. Howe-
ver, this experiment was carried out on a small cluster (4
nodes) and LAN network, so the impact of network factor
was neglected.

A spatial query on a large datasets are time-consuming
and some studies have focused on building optimal solutions
such as improving the performance of GIS polygon overlay
computation with MapReduce for spatial big data processing
(Wang et al., 2015), High-performance spatial query pro-
cessing on big taxi trip data using GPGPU (General-Purpose
computing on Graphics Processing Units) (Zhang et al.,
2014), A spatial data partitioning framework for scalable
query processing (Vo et al., 2014). GIS Tools for Hadoop used
a Quadtree index to speed up the performance (Whitman et
al., 2014), SpatialHadoop used two-level design to build a
grid index, R-tree, and R+-tree (Eldawy and Mokbel, 2015a).
However, creating the index in SpatialHadoop is not a simple
task because the user needs to implement various steps
such as using Java to customize the data format, compiling
Java code in *.jar file format, and loading this file for every
data reading/writing. Since this task is more suitable for a
developer than for a regular user, the index was not created
when using SpatialHadoop. Our MapReduce application is
introduced as a baseline for this experiment without any data
indexing strategy. Due to the mechanism of parallel data
processing, the changing of performance can be observed
when the number of maps and reduces are changed. Hadoop
decides the number of maps based on input size and DFS
block as mentioned. No specific number is given for the
best number of reduces except the maximum number of
999 reduces. Therefore, some other tests on our MapReduce
application with respect to changing number of reduces are
implemented based on our research experience.

4. Evaluation

The performance of the tools were evaluated in three
different scenarios: by changing the data size; by changing

the number of worker node; and by changing tasks. The taxi
drop-off filtering result is depicted in Fig. 11.

4.1. Evaluation based on the changing data size

In Fig. 12, the processing time on T3 increased
proportionally to the data size as no optimization was
implemented. This is similar to T1 when the data size is
increased from 0.5 to 1 GB; however, only a slight increase
occurred when data size is increased from 1 to 2 GB. The
time processing on T2 was remarkably lower than the other
tools, however it slightly increased proportional to data size.
The remarkable result can be deduced from leveraging the
non-sequential data reading/writing mechanism of database
management system from Hive and using Quadtree index in
the spatial data processing.

4.2. �Evaluation based on the changing number

of worker nodes

Fig. 13 shows that when testing with 0.5GB data, the
number of nodes almost did not affect the performance.
In other words, this amount of data is not large enough to
affect the performance of a Hadoop cluster. Because when

Fig. 11. Results after filtering process

Fig. 12. The performance with respect to filtering by
boundary, increasing data size, and using 2 worker nodes

A Benchmark Test of Spatial Big Data remove Processing Tools and a MapReduce Application

411

using 0.5GB, only 4 maps and 1 reduce were created at max.
Our worker node has 4 cores and 16GB memory, so the job
is always done with only one worker node specified. This
test was repeated on 1GB data and Fig. 14 shows that when
the number of worker nodes is increased from 1 to 2, the
changing performance on T1 and T2 is noticeable. This can be
explained as when loading 1GB data, there are always 8 maps
created in map phase. These maps can be performed at the
same time with 8 cores and 8 GB of memory (2 nodes contain
8 cores and 32 GB of memory). At the reduce phase, Pig did
not implement any reduce task in this case (Fig. 15). In other
words, the whole process was done at the map phase (8 map
tasks). So, the performance has increased when compared to
using only one node with 4 map tasks created. T2 created two
reduce tasks due to the fact that our data file is 1031183828
byte (> 1000000000 byte or 1GB). With 2 reduces running
at the same time, the performance of T2 was improved.
Similarly, there is no improvement when using 1GB data and
increasing the number of worker nodes from 2 to 3.

On T3, since there is always one reduce task created, the
performance did not changed when the number of worker
nodes are changed. Fig. 16 describes clearly this inadequacy
on the T3.

From the inadequacy mentioned, an adjustment was
applied on T3 by changing the number of reduce tasks. In
our experience, the number of reduce tasks depends on the
outcome of the map phase and the resources of Hadoop
cluster. If too many reduces are created, the output file
will be split into many small parts which are equivalent
to the number of reductions created. This is detrimental to
subsequent processing. The purpose of this test is to clarify
that the user should not use all default Hadoop parameters.
Fig. 17 showed that the performance on T3 has improved
significantly as the number of reduce tasks was altered from
1 to 12.

Fig. 13. The performance with respect to filtering by
boundary, increasing the number of worker nodes, and

using 0.5GB data

Fig. 15. Map Reduce plan on T1 after optimization by Pig
optimizer

Fig. 16. The performance on T3 with respect to filtering
by boundary, increasing the number of worker nodes, and

increasing the data size

Fig. 14. The performance on T1 and T2 with respect to
filtering by boundary, increasing the number of worker

nodes, and increasing the data size

T1

T2

412

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, 405-414, 2017

4.3. Evaluation based on the changing task

In fact, filtering taxi drop-off location by Manhattan
bounding box can be done through a range query by
comparing coordinates. In this case, T1 has achieved the best
performance (Fig. 18) as using SpatialFileSplitter (Eldawy
and Mokbel, 2015b) with a range filter to select the blocks
overlapping with the query area, while T2 achieved excellent
performance with respect to filtering by Manhattan boundary
(Fig. 19).

5. Conclusion

This paper presented a benchmark test between two notable
tools of spatial big data processing: GIS Tools for Hadoop
and SpatialHadoop with respect to filtering taxi drop-off
location within Manhattan area, while increasing data size
and changing number of worker nodes. GIS Tools for Hadoop
is superior to SpatialHadoop as it automatically generates a
Quadtree index in each spatial query. In addition, GIS Tools
for Hadoop leveraged Hive’s advantages to speed up data
access in HDFS. Therefore, its performance has improved
significantly. However, users should be familiar Java to
handle this tool conveniently. SpatialHadoop supported
an R-tree index but users must create this index manually
through various steps. In the test of filtering by Manhattan
boundary, the performance of SpatialHadoop is much lower
than GIS Tool for Hadoop as no index was used. In the case
of filtering by Manhattan bounding box, SpatialHadoop
achieved the best performance in term of performing an
optimal range query. Therefore, in some cases of estimation
or preliminary processing, users can use SpatialHadoop as a
second option. The number of maps and reduces affected to
the performance of a MapReduce application. Using only one
reduce was not effective. Thus, users should alter the number
of reduce tasks flexibly to improve the performance. Future
work will test the performance on indexed data and measure
the difference between IO disk and network performance.
Further, a framework for parallel processing of taxi trajectory
data can be developed.

Acknowledgment

This research, ‘Geospatial Big Data Management,
Analysis and Service Platform Technology Development’,
was supported by the MOLIT(The Ministry of Land,
Infrastructure, and Transport), Korea, under the national
spatial information research program supervised by the
KAIA(Korea Agency for Infrastructure Technology Advan
cement)”(17NSIP-B081011-04).

Fig. 17. The performance on T3 with respect to filtering by
boundary, increasing the data size, and changing number

of reduces

Fig. 18. The performance with respect to filtering by
bounding box and using 2 worker nodes

Fig. 19. The performance with respect to filtering by
boundary and using 2 worker nodes

A Benchmark Test of Spatial Big Data remove Processing Tools and a MapReduce Application

413

References

Aji, A., Sun, X., Vo, H., Liu, Q., Lee, R., Zhang, X., and
Wang, F. (2013), Demonstration of Hadoop-GIS: a spatial
data warehousing system over MapReduce, Proceedings
of the 21st ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM, 05-
08 November, Orlando, USA, pp. 528-531.

Apache. (2014), How many maps and reduces, Apache,
Wakefield, USA, https://wiki.apache.org/hadoop/
HowManyMapsAndReduces (last date accessed: 15
October 2017).

Dede, E., Govindaraju, M., Gunter, D., Canon, R. S., and
Ramakrishnan, L. (2013), Performance evaluation of
a Mongodb and Hadoop platform for scientific data
analysis, Proceedings of the 4th ACM Workshop on
Scientific Cloud Computing 2013, ACM, 17 June, New
York, USA, pp. 13-20.

Eldawy, A. and Mokbel, M. F. (2013), A demonstration of
SpatialHadoop: an efficient mapreduce framework for
spatial data, Proceedings of the VLDB Endowment,
VLDB, 26-30 August, Riva del Garda, Italy, Vol. 06, No.
12, pp. 1230-1233.

Eldawy, A. and Mokbel, M. F. (2014), Pigeon: a spatial
MapReduce language, Proceedings of 30th International
Conference on Data Engineering (ICDE) 2014, IEEE, 31
March - 04 April, Chicago, USA, pp. 1242-1245.

Eldawy, A. and Mokbel, M. F. (2015a), The ecosystem of
SpatialHadoop, Proceedings of SIGSPATIAL Special,
ACM, 03-06 November, Seattle, USA, Vol. 06, Issue 03,
pp. 03-10.

Eldawy, A. and Mokbel, M. F. (2015b), SpatialHadoop: A
MapReduce framework for spatial data, Proceedings
of 31st International Conference on Data Engineering
(ICDE) 2015, IEEE, 13-17 April, Seoul, Korea, pp. 1352-
1363.

Garcia-Garcia, F., Corral, A., Iribarne, L., Mavrommatis,
G., and Vassilakopoulos, M. (2017), A comparison
of distributed spatial data management systems for
processing distance join queries, In: Kirikova, M., Nørvåg,
K., and Papadopoulos, G. (eds.), Advances in Databases
and Information Systems, Springer, Cham, Switzerland,

pp. 214-228.
Gates, A. and Dai, D. (2016), Programming Pig: Dataflow

Scripting with Hadoop, O’Reilly Media, Sebastopol, USA,
pp. 65-66.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P.,
Narayanamurthy, S. M., Olston, C., and Srivastava, U.
(2009), Building a high-level dataflow system on top of
MapReduce: the Pig experience, Proceedings of the VLDB
Endowment, VLDB, 24-28 August, Lyon, France, Vol. 02,
pp. 1414-1425.

Jiang, Z. and Shekhar, S. (2017), Spatial Big Data Science,
Springer, Cham, Switzerland, pp. 03-13.

Jonathan, M. (2017), GIS tools for Hadoop, Esri, Readlands,
USA, https://blogs.esri.com/esri/arcgis/2013/03/25/gis-
tools-for-hadoop (last date accessed: 17 October 2017).

Maleki, E. F., Azadani, M. N., and Ghadiri, N. (2016),
Performance evaluation of SpatialHadoop for big
web mapping data, Proceedings of 2nd International
Conference on Web Research (ICWR), IEEE, 27-28 April,
Tehran, Iran, pp. 60-65.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins,
A. (2008), Pig latin: a not-so-foreign language for data
processing, Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ACM,
09-12 June, Vancouver, Canada, pp. 1099-1110.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010).
The Hadoop distributed file system, Proceedings of 26th
Symposium on Mass Storage Systems and Technologies
(MSST), IEEE, 03-07 May, Incline Vilage, USA, pp. 01-10.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka,
P., Anthony, S., Liu, H., Wyckoff, P., and Murthy, R.
(2009), Hive: a warehousing solution over a map-reduce
framework, Proceedings of the VLDB Endowment, VLDB,
24-28 August, Lyon, France, Vol. 02, pp. 1626-1629.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal,
S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H.,
Seth, S., and Saha, B. (2013), Apache Hadoop YARN: yet
another resource negotiator, Proceedings of the 4th Annual
Symposium on Cloud Computing (SOCC), ACM, 01-03
October, Santa Clara, USA, pp. 05-10.

Vo, H., Aji, A., and Wang, F. (2014), A spatial data partitioning

414

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, 405-414, 2017

framework for scalable query processing, Proceedings of
the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM, 04-
07 November, Dallas/Forth Worth, USA, pp. 545-548.

Wang, Y., Liu, Z., Liao, H., and Li, C. (2015), Improving
the performance of GIS polygon overlay computation
with MapReduce for spatial big data processing, Cluster
Computing Journal, Vol. 18, Issue 02, pp. 507-516.

Whitman, R. T., Park, M. B., Ambrose, S. M., and Hoel,
E. G. (2014), Spatial indexing and analytics on Hadoop,
Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, ACM, 04-07 November, Dallas/Forth Worth,
USA, pp. 73-82.

Witayangkurn, A., Horanont, T., and Shibasaki, R. (2012),
Performance comparisons of spatial data processing
techniques for a large scale mobile phone dataset,
Proceedings of the 3rd International Conference on
Computing for Geospatial Research and Applications,
ACM, 01-03 July, Reston, USA, pp. 25-31.

Zhang, J., You, S., and Gruenwald, L. (2014), High-performa-
nce spatial query processing on big taxi trip data using
gpgpus, Proceedings of International Congress on Big
Data, IEEE, 27-30 October, Washington, USA, pp. 72-79.

