• Title/Summary/Keyword: Pebax-1657

Search Result 10, Processing Time 0.023 seconds

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation (CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.393-402
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.

Gas Permeation Characteristics by Pebax/ZIF-9 Mixed Matrix Membrane (Pebax/ZIF-9 혼합막에 의한 기체투과 특성)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.325-335
    • /
    • 2022
  • In this study, zeolitic imidazolate framework-9 (ZIF-9) was synthesized and Pebax/ZIF-9 mixed membranes were prepared by varying the content in poly(ether-b-amide)-1657 (Pebax-1657), and then a single gas (N2, CO2) was permeated to investigate the gas permeation characteristics of the mixed membrane. As the ZIF-9 content incorporated into the pure Pebax membrane increased, the N2 permeability gradually decreased, and the CO2 permeability increased up to the Pebax/ZIF-9 3 wt% mixed membrane, and then decreased at the content thereafter. And among the mixed membranes, the Pebax/ZIF-9 3 wt% mixed membrane showed the highest selectivity of 69.3 by selectively accepting CO2 as the gate-opening phenomenon occurred for the polar gas, CO2. In addition, both the CO2 permeability and the CO2/N2 selectivity increased, resulting in the closest Robeson upper-bound.

Study on the Removal of Water Vapor Using PEI/PEBAX Composite Hollow Fiber Membrane (PEI/PEBAX 복합 중공사 막을 이용한 수분 제거에 관한 연구)

  • Park, Chun-Dong;Hyung, Chan-Heui;Kim, Kee-Hong;Choi, Won-Kil;Park, Yeong-Seong;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.119-128
    • /
    • 2013
  • In this research, PEI/PEBAX composite hollow fiber membrane was used for the removal of water vapor from gases. PEI (Polyetherimide) substrate membrane was spinned by dry-wet phase inversion method and coated with PEBAX (Polyether block amides) 3533 and PEBAX1657. Fabricated fibers typically had an asymmetric structure of a dense top layer supported by a sponge-like substructure through scanning electron microscopy (SEM). $H_2O/N_2$ mixture gas was used to compare the performance of separation according to temperature, pressure and water activity. The results of PEBAX3533 and PEBAX1657 composite membranes respectively showed $H_2O/N_2$ selectivity of 61.7~118.5 and 85.3~175.4 according to operating conditions. PEBAX3533 composite hollow fiber membranes module showed the water vapor removal of 90%.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Gas Permeation Properties of Carbon Dioxide and Methane for $PEBAX^{TM}$/TEOS Hybrid Membranes ($PEBAX^{TM}$/TEOS 하이브리드 분리막을 통한 이산화탄소와 메탄의 기체투과특성)

  • Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.460-464
    • /
    • 2011
  • Poly(ether-block-amide)(PEBA, $PEBAX^{TM}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permeation selectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$-1657 membrane and compare with those obtained for other grade of $PEBAX^{TM}$, $PEBAX^{TM}$-2533. And the organic/inorganic hybrid membranes were prepared using $PEBAX^{TM}$ and TEOS(tetraethoxysilane) by sol-gel process, and gas permeation properties were studied. $PEBAX^{TM}$-2533 membrane exhibited higher gas permeability coefficients than $PEBAX^{TM}$-1657 membrane. This was explained by the increase of chain mobility. The permeability coefficients for $PEBAX^{TM}$/TEOS hybrid membranes were higher than pure $PEBAX^{TM}$ membranes. This results were explained by the reduction of crystallinity of polyamide block by the introduction of TEOS. Ideal separation factor of hybrid membranes does not change much. This might be due to the increase of solubility selectivity.

Gas Permeation Properties of CO2 and CH4 for PEBAX®/Fumed Silica Hybrid Membranes (PEBAX®/fumed silica 하이브리드 분리막을 통한 CO2와 CH4의 기체투과특성)

  • Kim, Hyunjoon
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.74-82
    • /
    • 2022
  • The objective of this work was to investigate the gas permeation properties of CO2 and CH4 for PEBAX®/TS-530 hybrid membranes and compare with pure PEBAX®-1657 membrane. With FTIR and XRD it was possible to confirm that TS-530 was dispersed well in PEBAX® matrix. Compared with pure PEBAX® membrane, ideal separation factor for PEBAX®/TS-530 (10 wt%) hybrid membrane was enhanced a little. As the amount of TS-530 was increased, the gas permeability coefficients of both CO2 and CH4 were increased, while the ideal separation factor was decreased. This results were explained by the reduction of crystallinity of polyamide block and interchain distance caused by introduction of inorganic nanoparticles. And fumed silica might tend to agglomerate, resulting in forming nonselective nanogaps in the hybrid materials, thus the diffusivity would be enhanced at the expense of diffusivity selectivity.

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation (열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가)

  • Im, Kwang Seop;Lee, Jeong Woo;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.362-376
    • /
    • 2019
  • In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.

Preparation of Silver Nanoparticles Using AgNO3 Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO3- (올레핀/파라핀 분리용 운반체로서 AgNO3 전구체를 활용한 은 나노입자 제조 및 NO3-의 효과 분석)

  • kim, Minsu;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • In previous studies, a poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(precursor $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation and the performance of this composite membrane was maintained at a selectivity of 10 and a permeability of 15 GPU. However, since the price of $AgBF_4$ precursor is high, this study used $AgNO_3$ as a precursor of Ag nanoparticles which is competitive in terms of price. As a result, it was observed that the separation performance was not obtained because the existing $NO_3{^-}$ could surround AgNPs. In this study, we fabricated PEO, poly(vinyl alcohol)(PVA), and polyether block amide-1657 (PEBAX-1657) polymer composite membrane using electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) for separation performance even when $AgNO_3$ was used as a precursor of Ag nanoparticles. As a result, it was analyzed that the performance was not observed regardless of the influence of the polymer and the electron acceptor, indicating that the anion of the precursor plays a crucial role in the separation performance.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.