Acknowledgement
이 논문은 상명대학교 2021년도 교내연구비 지원에 의해 수행되었으며 이에 감사드립니다.
References
- V. Nafisi and M. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
- R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
- N. Azizi and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Petrol. Sci. Technol., 36, 993-1000 (2018). https://doi.org/10.1080/10916466.2018.1458120
- A. Khoshkharam, N. Azizi, R. M. Behbahani, and M. A. Ghayyem, Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane, Petrol. Sci. Technol., 35, 667-673 (2017). https://doi.org/10.1080/10916466.2016.1273242
- J. Kim, T. Park, and E. Chung, Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes, J. Membr. Sci. Res., 7, 74-84 (2021).
- R. Selyanchyn, M. Ariyoshi, and S. Fujikawa, Thickness effect on CO2/N2 separation in double layer Pebax-1657®/PDMS membranes, Membranes, 8, 121 (2018). https://doi.org/10.3390/membranes8040121
- S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020). https://doi.org/10.1016/j.seppur.2019.116150
- Z. Dai, L. Bai, K. N. Hval, X. Zhang, S. Zhang, and L. Deng, Pebax®/TSIL blend thin film composite membranes for CO2 separation, Sci. China Chem., 59, 538-546 (2016). https://doi.org/10.1007/s11426-016-5574-3
- R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture, Membranes, 10, 188 (2020). https://doi.org/10.3390/membranes10080188
- J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous Mesoporous Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
- W. Fam, J. Mansouri, H. Li, and V. Chen, Improving CO2 separation performance of thin film composite hollow fiber with Pebax® 1657/ionic liquid gel membranes, J. Membr. Sci., 537, 54-68 (2017). https://doi.org/10.1016/j.memsci.2017.05.011
- F. H. Akhtar, M. Kumar, and K. Peinemann, Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci., 525, 187-194 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
- P. Bernardo and G. Clarizia, Enhancing gas permeation properties of Pebax® 1657 membranes via polysorbate nonionic surfactants doping, Polymers, 12, 253 (2020). https://doi.org/10.3390/polym12020253
- H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356, eaab0530 (2017). https://doi.org/10.1126/science.aab0530
- M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
- J. E. Shin, S. H. Han, S. Y. Ha, and H. B. Park, The state of the art of membrane technologies for carbon dioxide separation, KIC News, 21, 2-16 (2018).
- M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review, Membranes, 8, 50 (2018). https://doi.org/10.3390/membranes8030050
- P. Zhao, G. I. Lampronti, G. O. Lloyd, E. Suard, and S. A. Redfern, Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7, J. Mater. Chem. A, 2, 620-623 (2014). https://doi.org/10.1039/C3TA13981F
- A. Arami-Niya, G. Birkett, Z. Zhu, and T. E. Rufford, Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2, J. Mater. Chem. A, 5, 21389-21399 (2017). https://doi.org/10.1039/C7TA03755D
- T. Li, Y. Pan, K. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
- T. Chakrabarty, P. Neelakanda, and K. Peinemann, CO2 selective, zeolitic imidazolate framework-7 based polymer composite mixed-matrix membranes, J. Mater. Sci. Res., 7, 1-11 (2018).
- B. A. Al-Maythalony, A. M. Alloush, M. Faizan, H. Dafallah, M. A. Elgzoly, A. A. Seliman, A. Al-Ahmed, Z. H. Yamani, M. A. Habib, and K. E. Cordova, Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes, ACS Appl. Mater. Interfaces, 9, 33401-33407 (2017). https://doi.org/10.1021/acsami.6b15803
- C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique, Membr. J., 9, 141-150 (1999).
- M. Ebrahimi and M. Mansournia, Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals, Mater. Lett., 189, 243-247 (2017). https://doi.org/10.1016/j.matlet.2016.12.025
- A. Ebrahimi and M. Mansournia, Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst, Chem. Phys., 511, 33-45 (2018). https://doi.org/10.1016/j.chemphys.2018.06.003
- K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
- C. Kang, Y. Lin, Y. Huang, K. Tung, K. Chang, J. Chen, W. Hung, K. Lee, and J. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures, J. Membr. Sci., 438, 105-111 (2013). https://doi.org/10.1016/j.memsci.2013.03.028
- W. Cai, T. Lee, M. Lee, W. Cho, D. Han, N. Choi, A. C. Yip, and J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7), J. Am. Chem. Soc., 136, 7961-7971 (2014). https://doi.org/10.1021/ja5016298
- X. Wu, M. N. Shahrak, B. Yuan, and S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation, Microporous Mesoporous Mater., 190, 189-196 (2014). https://doi.org/10.1016/j.micromeso.2014.02.016
- D. Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, and M. Deng, High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes, J. Membr. Sci., 521, 104-113 (2017). https://doi.org/10.1016/j.memsci.2016.08.061
- J. Deng, Z. Dai, and L. Deng, Effects of the morphology of the ZIF on the CO2 separation performance of MMMs, Ind. Eng. Chem. Res., 59, 14458-14466 (2020). https://doi.org/10.1021/acs.iecr.0c01946
- K. Knozowska, G. Li, W. Kujawski, and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation, J. Membr. Sci., 599, 117814 (2020). https://doi.org/10.1016/j.memsci.2020.117814
- S. Mosleh, G. Khanbabaei, M. Mozdianfard, and M. Hemmati, Application of poly(amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation, Iran. Polym. J., 25, 977-990 (2016). https://doi.org/10.1007/s13726-016-0484-y
- S. Jeong, H. Sohn, and S. W. Kang, Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport, Chem. Eng. J., 333, 276-279 (2018). https://doi.org/10.1016/j.cej.2017.09.125
- F. Pazani, A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020). https://doi.org/10.1016/j.polymertesting.2019.106264
- L. Xiang, D. Liu, H. Jin, L. Xu, C. Wang, S. Xu, Y. Pan, and Y. Li, Locking of phase transition in MOF ZIF-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation, Mater. Horiz., 7, 223-228 (2020). https://doi.org/10.1039/C9MH00409B
- M. Pazirofteh, M. Dehghani, S. Niazi, A. H. Mohammadi, and M. Asghari, Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material, J. Mol. Liq., 241, 646-653 (2017). https://doi.org/10.1016/j.molliq.2017.06.073
- J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation, J. Membr. Sci., 572, 300-308 (2019). https://doi.org/10.1016/j.memsci.2018.11.025
- H. Li, W. Lv, J. Xu, J. Hu, and H. Liu, Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?, J. Membr. Sci., 614, 118426 (2020). https://doi.org/10.1016/j.memsci.2020.118426
- G. M. Shi, H. Chen, Y. Jean, and T. S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013). https://doi.org/10.1016/j.polymer.2012.11.056
- S. Wang, Z. Huang, X. Ru, and J. Wang, Effects of different porous fillers on interfacial properties of poly(vinyl alcohol) hybrid films, J. Appl. Polym. Sci., 138(27), 50641 (2021). https://doi.org/10.1002/app.50641
- P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacirkova, and G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97, 73-82 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
- R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 49, 6530-6538 (2010). https://doi.org/10.1021/ie9016495
- L. Zhang, Z. Hu, and J. Jiang, Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study, J. Phys. Chem. C, 116, 19268-19277 (2012). https://doi.org/10.1021/jp3067124
- A. Noguera-Diaz, J. Villarroel-Rocha, V. P. Ting, N. Bimbo, K. Sapagb, and T. J. Maysa, Flexible ZIFs: Probing guest-induced flexibility with CO2, N2 and Ar adsorption, J. Chem. Technol. Biotechnol., 94, 3787-3792 (2019). https://doi.org/10.1002/jctb.5947
- S. W. Hwang, Y. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polym. Korea, 28, 374-381 (2004).
- K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572, 38-60 (2019). https://doi.org/10.1016/j.memsci.2018.10.049
- H. Kim, Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes, Korean Chem. Eng. Res., 49, 460-464 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
- V. Bondar, B. Freeman, and I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. B: Polym. Phys., 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
- L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030