DOI QR코드

DOI QR Code

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation

CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향

  • Yoon, Soong Seok (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 윤숭석 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2021.05.03
  • Accepted : 2021.05.31
  • Published : 2021.08.10

Abstract

In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.

본 연구는 대표적 poly(ether-b-amide)인 Pebax-1657과 Pebax-2533에 합성된 zeolitic imidazolate framework-7 (ZIF-7)을 넣어 혼합막을 제조하고, 단일기체 N2, CO2에 대한 투과 성질을 조사하였다. 기체투과 결과에서, N2의 경우 Pebax-1657/ZIF-7 혼합막과 Pebax-2533/ZIF-7 혼합막 모두 ZIF-7 혼입에 따라 투과도가 감소하는 비슷한 현상을 보였지만, CO2 투과도의 경우는 고분자에 종류에 따라 조금 다른 경향을 보였다. Pebax-1657/ZIF-7 혼합막의 경우는 ZIF-7의 0~3 wt% 함량 범위에서 CO2 투과도가 감소하다가 그 이후 함량에서 투과도가 증가하였고, Pebax-2533/ZIF-7 혼합막의 경우는 ZIF-7의 0~5 wt% 함량 범위에서 CO2 투과도 증가 없이 감소하였다. CO2/N2 선택도의 경우 두 혼합막 모두 ZIF-7의 함량이 많아짐에 따라 증가하는 경향을 보였으며, 특히 Pebax-2533/ZIF-7 5 wt%은 다른 혼합막들에 비해 가장 좋은 투과 성능을 보였다. 이는 ZIF-7이 Pebax-1657보다 Pebax-2533에 더 좋은 호환성을 보이며 CO2에 대한 선택적인 특성이 잘 나타났기 때문으로 생각된다.

Keywords

Acknowledgement

이 논문은 상명대학교 2021년도 교내연구비 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. V. Nafisi and M. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  2. R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  3. N. Azizi and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Petrol. Sci. Technol., 36, 993-1000 (2018). https://doi.org/10.1080/10916466.2018.1458120
  4. A. Khoshkharam, N. Azizi, R. M. Behbahani, and M. A. Ghayyem, Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane, Petrol. Sci. Technol., 35, 667-673 (2017). https://doi.org/10.1080/10916466.2016.1273242
  5. J. Kim, T. Park, and E. Chung, Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes, J. Membr. Sci. Res., 7, 74-84 (2021).
  6. R. Selyanchyn, M. Ariyoshi, and S. Fujikawa, Thickness effect on CO2/N2 separation in double layer Pebax-1657®/PDMS membranes, Membranes, 8, 121 (2018). https://doi.org/10.3390/membranes8040121
  7. S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020). https://doi.org/10.1016/j.seppur.2019.116150
  8. Z. Dai, L. Bai, K. N. Hval, X. Zhang, S. Zhang, and L. Deng, Pebax®/TSIL blend thin film composite membranes for CO2 separation, Sci. China Chem., 59, 538-546 (2016). https://doi.org/10.1007/s11426-016-5574-3
  9. R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture, Membranes, 10, 188 (2020). https://doi.org/10.3390/membranes10080188
  10. J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous Mesoporous Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
  11. W. Fam, J. Mansouri, H. Li, and V. Chen, Improving CO2 separation performance of thin film composite hollow fiber with Pebax® 1657/ionic liquid gel membranes, J. Membr. Sci., 537, 54-68 (2017). https://doi.org/10.1016/j.memsci.2017.05.011
  12. F. H. Akhtar, M. Kumar, and K. Peinemann, Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci., 525, 187-194 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  13. P. Bernardo and G. Clarizia, Enhancing gas permeation properties of Pebax® 1657 membranes via polysorbate nonionic surfactants doping, Polymers, 12, 253 (2020). https://doi.org/10.3390/polym12020253
  14. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356, eaab0530 (2017). https://doi.org/10.1126/science.aab0530
  15. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  16. J. E. Shin, S. H. Han, S. Y. Ha, and H. B. Park, The state of the art of membrane technologies for carbon dioxide separation, KIC News, 21, 2-16 (2018).
  17. M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review, Membranes, 8, 50 (2018). https://doi.org/10.3390/membranes8030050
  18. P. Zhao, G. I. Lampronti, G. O. Lloyd, E. Suard, and S. A. Redfern, Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7, J. Mater. Chem. A, 2, 620-623 (2014). https://doi.org/10.1039/C3TA13981F
  19. A. Arami-Niya, G. Birkett, Z. Zhu, and T. E. Rufford, Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2, J. Mater. Chem. A, 5, 21389-21399 (2017). https://doi.org/10.1039/C7TA03755D
  20. T. Li, Y. Pan, K. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  21. T. Chakrabarty, P. Neelakanda, and K. Peinemann, CO2 selective, zeolitic imidazolate framework-7 based polymer composite mixed-matrix membranes, J. Mater. Sci. Res., 7, 1-11 (2018).
  22. B. A. Al-Maythalony, A. M. Alloush, M. Faizan, H. Dafallah, M. A. Elgzoly, A. A. Seliman, A. Al-Ahmed, Z. H. Yamani, M. A. Habib, and K. E. Cordova, Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes, ACS Appl. Mater. Interfaces, 9, 33401-33407 (2017). https://doi.org/10.1021/acsami.6b15803
  23. C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique, Membr. J., 9, 141-150 (1999).
  24. M. Ebrahimi and M. Mansournia, Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals, Mater. Lett., 189, 243-247 (2017). https://doi.org/10.1016/j.matlet.2016.12.025
  25. A. Ebrahimi and M. Mansournia, Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst, Chem. Phys., 511, 33-45 (2018). https://doi.org/10.1016/j.chemphys.2018.06.003
  26. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
  27. C. Kang, Y. Lin, Y. Huang, K. Tung, K. Chang, J. Chen, W. Hung, K. Lee, and J. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures, J. Membr. Sci., 438, 105-111 (2013). https://doi.org/10.1016/j.memsci.2013.03.028
  28. W. Cai, T. Lee, M. Lee, W. Cho, D. Han, N. Choi, A. C. Yip, and J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7), J. Am. Chem. Soc., 136, 7961-7971 (2014). https://doi.org/10.1021/ja5016298
  29. X. Wu, M. N. Shahrak, B. Yuan, and S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation, Microporous Mesoporous Mater., 190, 189-196 (2014). https://doi.org/10.1016/j.micromeso.2014.02.016
  30. D. Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, and M. Deng, High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes, J. Membr. Sci., 521, 104-113 (2017). https://doi.org/10.1016/j.memsci.2016.08.061
  31. J. Deng, Z. Dai, and L. Deng, Effects of the morphology of the ZIF on the CO2 separation performance of MMMs, Ind. Eng. Chem. Res., 59, 14458-14466 (2020). https://doi.org/10.1021/acs.iecr.0c01946
  32. K. Knozowska, G. Li, W. Kujawski, and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation, J. Membr. Sci., 599, 117814 (2020). https://doi.org/10.1016/j.memsci.2020.117814
  33. S. Mosleh, G. Khanbabaei, M. Mozdianfard, and M. Hemmati, Application of poly(amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation, Iran. Polym. J., 25, 977-990 (2016). https://doi.org/10.1007/s13726-016-0484-y
  34. S. Jeong, H. Sohn, and S. W. Kang, Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport, Chem. Eng. J., 333, 276-279 (2018). https://doi.org/10.1016/j.cej.2017.09.125
  35. F. Pazani, A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020). https://doi.org/10.1016/j.polymertesting.2019.106264
  36. L. Xiang, D. Liu, H. Jin, L. Xu, C. Wang, S. Xu, Y. Pan, and Y. Li, Locking of phase transition in MOF ZIF-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation, Mater. Horiz., 7, 223-228 (2020). https://doi.org/10.1039/C9MH00409B
  37. M. Pazirofteh, M. Dehghani, S. Niazi, A. H. Mohammadi, and M. Asghari, Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material, J. Mol. Liq., 241, 646-653 (2017). https://doi.org/10.1016/j.molliq.2017.06.073
  38. J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation, J. Membr. Sci., 572, 300-308 (2019). https://doi.org/10.1016/j.memsci.2018.11.025
  39. H. Li, W. Lv, J. Xu, J. Hu, and H. Liu, Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?, J. Membr. Sci., 614, 118426 (2020). https://doi.org/10.1016/j.memsci.2020.118426
  40. G. M. Shi, H. Chen, Y. Jean, and T. S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013). https://doi.org/10.1016/j.polymer.2012.11.056
  41. S. Wang, Z. Huang, X. Ru, and J. Wang, Effects of different porous fillers on interfacial properties of poly(vinyl alcohol) hybrid films, J. Appl. Polym. Sci., 138(27), 50641 (2021). https://doi.org/10.1002/app.50641
  42. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacirkova, and G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97, 73-82 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
  43. R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 49, 6530-6538 (2010). https://doi.org/10.1021/ie9016495
  44. L. Zhang, Z. Hu, and J. Jiang, Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study, J. Phys. Chem. C, 116, 19268-19277 (2012). https://doi.org/10.1021/jp3067124
  45. A. Noguera-Diaz, J. Villarroel-Rocha, V. P. Ting, N. Bimbo, K. Sapagb, and T. J. Maysa, Flexible ZIFs: Probing guest-induced flexibility with CO2, N2 and Ar adsorption, J. Chem. Technol. Biotechnol., 94, 3787-3792 (2019). https://doi.org/10.1002/jctb.5947
  46. S. W. Hwang, Y. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polym. Korea, 28, 374-381 (2004).
  47. K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572, 38-60 (2019). https://doi.org/10.1016/j.memsci.2018.10.049
  48. H. Kim, Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes, Korean Chem. Eng. Res., 49, 460-464 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  49. V. Bondar, B. Freeman, and I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. B: Polym. Phys., 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  50. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030