DOI QR코드

DOI QR Code

A Study of Nitric Oxide Oxidation Catalyst Using Non-noble Metals

비귀금속계 금속을 이용한 일산화질소 산화 촉매 연구

  • Shin, JungHun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, SungChang (Department of Environmental Energy Engineering, Kyonggi University)
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2021.05.12
  • Accepted : 2021.05.31
  • Published : 2021.08.10

Abstract

In this study, impact of Co proportion and calcination temperature of ceria on the Co/CeO2 was analyzed by comparing nitrogen monoxide oxidation performance of various catalysts and their physico-chemical properties. The structural properties of each catalyst were studied by XRD and BET analysis, and the surface crystal states of cobalt were proposed according to the surface density. Oxidation states of elements were observed through Raman and XPS analysis, and the relationship between typical oxidation states and nitrogen monoxide oxidation performance was designed. Through H2-TPR, oxygen-transferring capacity due to changes in the characteristics of catalysts were identified, and activation sites (Co3+) for oxidation were suggested.

본 연구에서는 Co/CeO2 촉매 제조 시 코발트의 첨가 함량 및 세리아의 소성온도에 따른 물리·화학적 특성 및 일산화질소 산화 성능을 비교하였다. Co/CeO2 촉매의 구조적 특성은 XRD, BET 분석을 통하여 확인하였으며, 코발트 표면밀도에 따른 표면 결정 상태를 제안하였다. 또한, Raman, XPS 분석을 통하여 촉매의 산화가 및 산소 결합 상태를 확인하였으며, 일산화질소 산화 성능과의 관계를 제안하였다. H2-TPR 분석을 통하여 촉매의 특성 변화에 따른 산소전달특성을 확인하였으며, 일산화질소 산화를 위한 촉매의 활성점(Co3+)을 제안하였다.

Keywords

Acknowledgement

이 저서는 2019년도 경기대학교 연구년 수혜로 연구되었음.

References

  1. G. Qi and R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  2. P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B: Environ., 111-112, 67-80 (2012). https://doi.org/10.1016/j.apcatb.2011.09.019
  3. O. Krocher, Chapter 9 Aspects of catalyst development for mobile urea-SCR systems - from vanadia-Titania catalysts to metal-exchanged zeolite, Stud. Surf. Sci. Catal., 171, 261-289 (2007). https://doi.org/10.1016/S0167-2991(07)80210-2
  4. R. Krzyzynska and D. Hutson, Effect of solution pH on SO2 , NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber, J. Air Waste Manage. Assoc., 62, 212-220 (2012). https://doi.org/10.1080/10473289.2011.642951
  5. X. Chang, G. Lu, Y. Guo, Y. Wang, and Y. Guo, A high effective adsorbent of NOx: Preparation, characterization and performance of Ca-beta zeolites, Microporous Mesoporous Mater., 165, 113-120 (2013). https://doi.org/10.1016/j.micromeso.2012.07.040
  6. M. S. Kang, J. Shin, T. U. Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO3 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020). https://doi.org/10.1016/j.cej.2019.122601
  7. M. D. Hutson, R. Krzyzynska, and R. K. Srivastava, Simulataneous removal of SO2 , NOx and Hg from coal flue gas using a NaClO2 -enhanced wet scrubber, Ind. Eng. Chem. Res., 47, 5825-5831 (2008). https://doi.org/10.1021/ie800339p
  8. I. Boscarato, N. Hickey, J. Kaspar, M. V. Prati, and A. mariani, Green shipping: Marine engine pollution abatement using a combined catalyst/seawater scrubber system. 1. effect of catalyst, J. Catal., 328, 248-257 (2015). https://doi.org/10.1016/j.jcat.2014.12.013
  9. K. Hauff, U. Tuttlies, G. Eigenberger, and U. Nieken, Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst - Experimental reults, Appl. Catal. B: Environ., 123-124, 107-116 (2012). https://doi.org/10.1016/j.apcatb.2012.04.008
  10. Y. Liang, X. Ding, J. Dai, M. Zhao, L. Zhong, J. Wang, and Y. Chen, Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce, Catal. Today, 327, 64-72 (2019). https://doi.org/10.1016/j.cattod.2018.06.008
  11. L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalyst, Appl. Catal. B: Environ., 1-2, 224-231 (2009).
  12. S. Adjimi, J. M. Gracia-vargas, J. A. Diaz, L. Retailleau, S. Gil, M. Pera-Titus, Y. Guo, and A. Giroir-Fendler, Highly efficient and stable Ru/K-OMS-2 catalyst for NO oxidation, Appl. Catal. B: Environ., 219, 459-466 (2017). https://doi.org/10.1016/j.apcatb.2017.07.044
  13. D. Y. Yoon, E. Lim, Y. J. Kim, J. H. Kim, T. Ryu, S. Lee, B. K. Cho, I. S. Nam, J. W. Choung, and S. Yoo, NO oxidation activity of Ag-doped perovskite catalysts, J. Catal., 319, 182-193 (2014). https://doi.org/10.1016/j.jcat.2014.09.007
  14. X. Li, S. Zhang, Y. Jia, X. Liu, and Q. Zhong, Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts, J. Nat. Gas Chem., 1, 17-24 (2012).
  15. L. Qiu, Y. Wang, D. Pang, F. Ouyang, C. Zhang, and G. Cao, Characterization and catalytic activity of Mn-Co/TiO2 catalysts for NO oxidation to NO2 at low temperature, Catalysts, 6(1), 9 (2016). https://doi.org/10.3390/catal6010009
  16. M. F. Irfan, J. H. Goo, and S. D. Kim, Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process, Appl. Catal. B: Environ., 3-4, 267-274 (2008).
  17. M. M. Yung, E. M. Holmgreen, and U. S. Uzkan, Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide, J. Catal., 247, 356-367 (2007). https://doi.org/10.1016/j.jcat.2007.02.020
  18. Z. Zhu, G. Lu, Z. Zhang, Y. Guo, Y. Guo, and Y. Wang, Highly active and stable Co3O4 /ZSM-5 catalyst for propane oxidation: Effect of the preparation method, ACS Catal., 6, 1154-1164 (2013).
  19. C. Q. Lv, C. Liu, and G. C. Wang, A DFT study of methanol oxidation on Co3O4 , Catal. Commun., 45, 83-90 (2014). https://doi.org/10.1016/j.catcom.2014.07.034
  20. H. F. Wang, R. kavanagh, Y. L. Guo, Y. Guo, G. Lu, and P. Hu, Origin of extraordinarily high catalytic activity of Co3O4 and Its morphological chemistry for CO oxidation at low temperature, J. Catal., 296, 110-119 (2012). https://doi.org/10.1016/j.jcat.2012.09.005
  21. X. Xie, Y Li, Z.Q. Liu, M. Haruta, and W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature, 458, 746-749 (2009). https://doi.org/10.1038/nature07877
  22. J. Xu, G. Lu, Y. Guo, Y. Guo, and X. Q. Gong, A highly effective catalyst of Co-CeO3 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx strage catacity, Appl. Catal. A: Gen., 535, 1-8 (2017). https://doi.org/10.1016/j.apcata.2017.02.005
  23. M. P. Woods, P. Gawade, B. Tan, and U. S. Ozkan, Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles, Appl. Catal. B: Environ., 1-2, 28-35 (2010).
  24. N. Akter, S. Zhang, J. Lee, D. H. Kim, J. A. Boscoboinik, and T. Kim, Selective catalytic reduction of NO by ammonia and NO oxidation over CoOx/CeO2 catalysts, Mol. Catal., 482, 110664 (2020). https://doi.org/10.1016/j.mcat.2019.110664
  25. P. Gawade, B. Bayram, A. M. C. Alexander, and U. S. Ozkan, Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: Effect of cobalt loading, Appl. Catal. B: Environ., 128, 21-30 (2012). https://doi.org/10.1016/j.apcatb.2012.06.032
  26. D. Jampaiah, K. M. Tur, S. J. Ippolito, Y. M. Sabri, J. Tardio, S. K. Bhargava, and B. M. Reddy, Structure characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation, RCS Adv., 3, 12963 (2013).