DOI QR코드

DOI QR Code

Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors

고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작

  • Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seo Jin (Department of Chemical Engineering, Kangwon National University) ;
  • Shin, Junho (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ryu, Taegon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeong, Jae-Min (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2021.05.24
  • Accepted : 2021.06.09
  • Published : 2021.08.10

Abstract

In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 µF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.

본 논문에서는 얇고 유연한 평면 슈퍼 커패시터(PSC)를 스크린 인쇄된 탄소 전극에 폴리아닐린(PANI)을 코팅하여 제작하였습니다. 스크린 프린팅 방법을 사용하여 유연한 폴리에틸렌 테레프탈레이트에 탄소 잉크를 코팅한 후 희석 중합 법을 사용하여 탄소 표면에 PANI 박막을 코팅하였습니다. 서로 맞물린 구조의 얇은 유연한 PANI 전극을 폴리머겔 전해질로 조립하여 평면 모양의 슈퍼 커패시터(PSC) 장치를 만들었습니다. 상기 제조된 PANI/PSC는 매우 얇고 유연 하였으며, 10 mV/s에서 409 µF/cm2의 높은 면적 정전용량을 나타내었습니다. 이 값은 500 mV/s에서 원래 값의 46%로 유지되었습니다. 유연한 PANI/PSC는 180°의 구부러진 상태와 100번째의 반복적인 피로도 테스트에서도 82%의 높은 정전 용량 유지를 보여주었습니다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1009926). This Research has been performed a by the Industrial Strategic Technology Development Program-Strategic core material Independent technology development project (20010193, Development of Electrode Fabrication Technology using Pitch for MCDI System Applied to Lithium Recovery from Low Grade Brine and Waste Solution and Manufacturing Technology of Lithium Compound for anode material of Lithium secondary batteries) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci., 7, 867-884 (2014). https://doi.org/10.1039/c3ee43526a
  2. H. Hu, Z. Pei, and C. Ye, Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage, Energy Storage Mater., 1, 82-102 (2015). https://doi.org/10.1016/j.ensm.2015.08.005
  3. T. Lv, M. Liu, D. Zhu, L. Gan, and T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors, Adv. Mater., 30, 1705489-1705505 (2018). https://doi.org/10.1002/adma.201705489
  4. A. Tyagi, K. M. Tripathi, and R. K. Gupta, Metal-organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation, J. Mater. Chem. A, 3, 22507-20613 (2015). https://doi.org/10.1039/C5TA04675K
  5. N. A. Kyeremateng, T. Brousse, and D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol., 12, 7-15 (2017). https://doi.org/10.1038/nnano.2016.196
  6. D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, and D. Guay, Influence of the configuration in planar interdigitated electrochemical micro-capacitors, J. Power Sources, 230, 230-235 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.039
  7. J. Zhang, G. Zhang, T. Zhou, and S. Sun, Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications, Adv. Funct. Mater., 30, 1910000-1910020 (2020). https://doi.org/10.1002/adfm.201910000
  8. N. Liu and Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small, 13, 1701989-1701998 (2017). https://doi.org/10.1002/smll.201701989
  9. D. Qi, Y. Liu, Z. Liu, L. Zhang, and X. Chen, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater., 29, 1602802-1602840 (2017). https://doi.org/10.1002/adma.201602802
  10. D. Aradilla, M. Delaunay, S. Sadki, J.-M. Gerard, and G. Bidan, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19254-19253 (2015). https://doi.org/10.1039/C5TA03471J
  11. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, in nanoscience and technology: A collection of reviews from nature journals, World Scientific, 320-329, (2010).
  12. N. R. Chodankar, H. D. Pham, A. K. Nanjundan, J. F. S. Fernando, K. Jayaramulu, D. Golberg, Y. K. Han, and D. P. Dubal, True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors, Small, 16, 2002806-2002840 (2020). https://doi.org/10.1002/smll.202002806
  13. M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, A review on phase change energy storage: Materials and applications, Energy Convers. Manage., 45, 1597-1615 (2004). https://doi.org/10.1016/j.enconman.2003.09.015
  14. R. Srinivasan, E. Elaiyappillai, E. J. Nixon, I. Sharmila Lydia, and P. M. Johnson, Enhanced electrochemical behavior of Co-MOF/PANI composite electrode for supercapacitors, Inorg. Chim. Acta, 502, 119393-119403 (2020). https://doi.org/10.1016/j.ica.2019.119393
  15. E. Payami, R. Teimuri-Mofrad, I. Ahadzadeh, and R. Mohammadi, A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance super-capacitor, Electrochim. Acta, 354, 136712-136724 (2020). https://doi.org/10.1016/j.electacta.2020.136712
  16. P. Du, Y. Dong, H. Kang, J. Li, J. Niu, and P. Liu, Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors, J. Power Sources, 449, 227477-227489 (2020). https://doi.org/10.1016/j.jpowsour.2019.227477
  17. K. Gholami Laelabadi, R. Moradian, and I. Manouchehri, One-step fabrication of flexible, cost/time effective, and high energy storage reduced graphene oxide@PANI supercapacitor, ACS Appl. Energy Mater., 3, 5301-5312 (2020). https://doi.org/10.1021/acsaem.0c00317
  18. S. Yu, B. Patil, and H. Ahn, PANI//MoO3 fiber-shaped asymmetric supercapacitors with roll-type configuration, Fibers Polym., 21, 465-472 (2020). https://doi.org/10.1007/s12221-020-9811-1
  19. M. Z. Iqbal, M. M. Faisal, S. R. Ali, S. Farid, and A. M. Afzal, Co-MOF/polyaniline-based electrode material for high performance supercapattery devices, Electrochim. Acta, 346, 136039-136040 (2020). https://doi.org/10.1016/j.electacta.2020.136039
  20. T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen, X. Lu, Y. Wang, and X. Guo, High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes, Dalton Trans., 49, 3304-3311 (2020). https://doi.org/10.1039/D0DT00100G
  21. R. Awata, M. Shehab, A. El Tahan, M. Soliman, and S. Ebrahim, High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite, Electrochim. Acta, 347, 136229-136242 (2020). https://doi.org/10.1016/j.electacta.2020.136229
  22. Y. Shen, Z. Qin, S. Hu, L. Yang, X. Xu, L. Ding, and Y. Zhang, In-situ hybridization of graphene sheets onto polyaniline nanofiber arrays grown on the surface of carbon cloth under high electric voltage field for high-performance flexible supercapacitor, Carbon, 158, 711-718 (2020). https://doi.org/10.1016/j.carbon.2019.11.045
  23. L. Sun, X. Wang, W. Liu, K. Zhang, J. Zou, and Q. Zhang, Optimization of coplanar high rate supercapacitors, J. Power Sources, 315, 1-8 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.019
  24. Y. Chen, X. Li, Z. Bi, G. Li, X. He, and X. Gao, Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors, Chem. Eng. J., 353, 499-506 (2018). https://doi.org/10.1016/j.cej.2018.07.158
  25. J. Yun, D. Kim, G. Lee, and J. S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes, Carbon, 79, 156-164 (2014). https://doi.org/10.1016/j.carbon.2014.07.055
  26. B. Shen, J. Lang, R. Guo, X. Zhang, and X. Yan, Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MoO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces, 7, 25378-25389 (2015). https://doi.org/10.1021/acsami.5b07909
  27. R. Guo, J. Chen, B. Yang, L. Liu, L. Su, B. Shen, and X. Yan, In-plane micro-supercapacitors for an integrated device on one piece of paper, Adv. Funct. Mater., 27, 1702394-1702404 (2017) https://doi.org/10.1002/adfm.201702394
  28. J. Li, S. S. Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng, and M. Ostling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing, ACS Nano, 11, 8249-8256 (2017). https://doi.org/10.1021/acsnano.7b03354
  29. S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, and X. Zhao, Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors, J. Mater. Chem. A, 2, 18125-18131 (2014). https://doi.org/10.1039/C4TA03192J