DOI QR코드

DOI QR Code

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation

열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가

  • Im, Kwang Seop (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Jeong Woo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Jang, Jae Young (Pure Envirech Co. Ltd.) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 임광섭 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 이정우 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 장재영 ((주)퓨어엔비텍) ;
  • 남상용 (경상대학교 나노신소재융합공학과 공학연구원)
  • Received : 2019.12.22
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.

본 연구에서는 열유도상분리법(thermally induced phase separation)을 사용하여 제조한 플라워 형태의 단면을 갖는 PVDF [poly(vinylidene fluoride)] 중공사 분리막에 대한 친수화 코팅과 그에 따른 특성평가에 대한 연구를 수행하였다. 연구에 사용한 중공사 분리막은 (주)퓨어엔비텍에서 제조한 PVDF 소재의 분리막이었으며, 친수화 코팅 실험은 PEBAX 1657, 2533, 3533의 공중합체 고분자를 사용하여 농도가 다른 용액을 제조 후 딥 코팅 방법을 이용하여 실시하였다. 친수화 코팅이 된 중공사 분리막은 친수화 정도를 파악하기 위하여 SEM 촬영 및 접촉각 측정을 실시하였다. SEM 촬영 결과 코팅의 농도가 증가하고 코팅횟수가 증가할수록 코팅층의 두께가 두꺼워짐을 확인하였고, 접촉각 측정의 경우 코팅의 농도가 증가하고 코팅횟수가 증가할수록 접촉각이 낮아짐을 확인하였다. 기체 투과 실험 결과 코팅농도가 증가하고 코팅횟수가 증가할수록 산소 기체투과량이 감소하였으며 친수성이 높은 PEBAX 1657로 코팅한 중공사의 기체투과량이 PEBAX 2533과 3533으로 코팅된 중공사보다 낮은 기체투과량을 가짐을 확인하였다.

Keywords

References

  1. S. M. Lee and S. S. Kim, "Structural changes of PVDF membranes by phase separation control", Korean Chem. Eng. Res., 54, 57 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  2. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  3. B. M. Jun, E. T. Yun, S. W. Han, N. T. P. Nga, H. G. Park, and Y. N. Kwon, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  4. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  5. T. S. Lee, Y. J. Kim, S. W. Ham, S. K. Hong, B. J. Park, Y. I. Shin, and I. S. Jung, "Development of PTFE membrane bio-reactor (MBR) for integrating wastewater reclamation and rainwater harvesting", J. Korean Soc. Water Environ., 28, 269 (2012).
  6. S. J. Choi and D. R. Lee, "Indicators for evaluation of sustainable water resources development and management", J. Korea Water Resour. Assoc., 38, 779 (2005). https://doi.org/10.3741/JKWRA.2005.38.9.779
  7. M. M. Pendergast and E. M. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  8. H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, "Research and development trends of ion exchange membrane processes", KIC News., 14, 21 (2011).
  9. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioil, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016). https://doi.org/10.1016/j.memsci.2016.02.050
  10. K. M. Kyung and J. Y. Park, "Effect of pH in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  11. A. Terada, K. Hibiya, J. Nagai, S. Tsuneda, and A. Hirata, "Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment", J. Biosci. Bioeng., 95, 170 (2003). https://doi.org/10.1016/S1389-1723(03)80124-X
  12. E. Casey, B. Glennon, and G. Hamer, "Review of membrane aerated biofilm reactors", Resources, Conservation and Recycling, 27, 203 (1999). https://doi.org/10.1016/S0921-3449(99)00007-5
  13. E. Casey, B. Glennon, and G. Hamer, "Biofilm development in a membrane-aerated biofilm reactor: Effect of flow velocity on performance", Biotechnol. Bioeng., 67, 476 (2000). https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4<476::AID-BIT11>3.0.CO;2-2
  14. F. L. Huang, Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou, and S. D. Jiang, "Dynamic wettability and contact angles of poly (vinylidene fluoride) nanofiber membranes grafted with acrylic acid", Express Polymer Letters, 4, 551 (2010). https://doi.org/10.3144/expresspolymlett.2010.69
  15. M. Peng, H. Li, L. Wu, Q. Zheng, Y. Chen, and W. Gu, "Porous poly (vinylidene fluoride) membrane with highly hydrophobic surface", J. Appl. Polym. Sci., 98, 1358 (2005). https://doi.org/10.1002/app.22303
  16. F. Liu, Y. Y. Xu, B. K. Zhu, F. Zhang, and L. P. Zhu, "Preparation of hydrophilic and fouling resistant poly (vinylidene fluoride) hollow fiber membranes", J. Membr. Sci., 345, 331 (2009). https://doi.org/10.1016/j.memsci.2009.09.020
  17. B. Wu, K. Li, and W. K. Teo, "Preparation and characterization of poly (vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation", J. Appl. Polym. Sci., 106, 1482 (2007). https://doi.org/10.1002/app.26624
  18. S. M. Woo, J. J. Choi, and S. Y. Nam, "Prepration of hydoxy polyimde membranes and their carbon dioxide permeation property", Membr. J., 22, 128 (2012).
  19. S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_2/N_2$ permeation properties", Membr. J., 21, 62 (2011).