Journal of the Korean Data and Information Science Society
/
제17권4호
/
pp.1151-1160
/
2006
The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.
The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.
The main objective of this study are to propose two methods that would be a comprehensive measure of evaluation for non-normal process capability with Beta distributions. First method is introduced using process capability index $C_{psk}$ by the Pearson system and Johnson system. The Pearson system and the Johnson System selected for process capability index calculation have a equivalent result of this study that the ranking of the seven indices in terms of sensitivity to departure of the process median from the target value from the most sensitive one up to the least sensitive are $C^{*}_{pm}$ , $C_{psk}$ , $C_{s}$ , $C_{pmk}$ , $C_{pm}$ , $C_{pk}$ , $C_{p}$ . Second method show using the percentage nonconforming by the Pearson, Johnson and Burr functions. In thus study, we find that the Pearson system and the Burr system are a reasonable method to estimate percentage nonconforming. But, the exact procedure for deriving this estimate will be based on Beta distribution. Accordingly, if a process is not normally distributed , but normal-based techniques are used serious errors can result.
The main objective of this paper is to propose a measure of evaluation for non-normal process capability. If a process is not normally distributed, but normal-based techniques are used, serious errors can result. Our approach to solve this problem is that the Pearson system, the Johnson system, and the Burr system are selected for estimating a measure of process capability using the percentage nonconforming. In this paper, we found that the Pearson system and the Johnson system were a conparatively reasonable methods to calculate out of specification by example.
The purpose of this research were to evaluate the overall capacity of activity in hemiplegic patients caused by stroke, to learn the relationship of the overall capacity of activity with 8 out of 9 subtest of the Motor Assessment Scale (MAS) excluding general tonus subtest, and to use in creation of more efficient rehabilitation program by using Motor Assessment Scale (MAS). Twenty-four stroke patients (14 men and 10 women) were the subjects in this study. Their average age was 59.5 and they received average of 17.88 month of therapy. Collected data analysis was completed by using Statistic Analysis System (SAS). The results were as follows: 1) There was no difference in capacity of activity between right hemiplegia and left hemiplegia. 2) There was no difference in capacity of activity compared therapeutic period and age. 3) In comparing the relationship of the each subtest with the overall capacity of activity, upper arm function showed the highest relation (pearson's r = 0.914), and balance sitting (pearson's r= 0.812) and supine to sitting overside of bed (pearson'sr = 0.746) also showed large relationship. 4) Hand movement (pearson's r = -0.45) and advanced hand activity (pearson's r = -0.401) revealed relationship of general tonus with each subtest. 5) Supine to sitting over side of bed (pearson's r = 0.74), balanced sitting(pearson's r = 0.523), and sitting to standing (pearson's r = 0.723) showed large relationship with walking.
The main objective of this paper to purpose a evaluating methods of process capability measures for exponential distributed quality characteristics. For correctly evaluating process capability , the first thing , exponential data is applied the Lilliefors test statistic to the null hypothesis of nornality. The next, exponential parameters is estimated in terms of MLE , ME , MME and then evaluated , respectively , process capability index based on exponential curved (Ιe) proposed by in this study and process capability indices based on Pearson system and Johnson system.
확정론적 최적설계 방법은 설계 혹은 공정과정에서 발생하는 설계변수의 불확실성을 고려하지 않아 최적점이 제한조건의 경계점에 위치한다. 신뢰성기반 최적설계는 설계자가 요구하는 신뢰도를 만족하는 범위에서 목적함수가 최소가 되는 최적점을 찾는 방법이다. 이 과정은 최적설계 과정과 설계변수의 불확실성을 고려하는 신뢰성해석 과정으로 나눌 수 있다. 모멘트기반 신뢰성해석은 시스템의 통계적 모멘트를 이용하여 신뢰도를 구하는 방법이다. 일반적으로 신뢰성해석은 통계적 모멘트의 값에 따라 피어슨 시스템을 통해 시스템의 확률밀도함수를 7 가지 형태로 분류하여 신뢰도를 구한다. 하지만 피어슨 시스템에서 타입 IV 분포의 경우에는 수식이 복잡하여 다루기 어려운 문제점이 있었다. 본 논문에서는 크리깅모델을 이용하여 피어슨 시스템의 단점을 개선한 신뢰성 해석기법을 크리깅모델을 이용하여 개발하고 이를 적용하여 신뢰성기반최적설계 방법을 제안하다. 피어슨 타입 IV 의 수학 및 공학예제에 대하여 신뢰성기반최적설계를 수행하고 이를 몬테카를로 시뮬레이션을 이용하여 정확성을 검증한다.
본 연구에서는 수중 무기체계의 효과도 예측을 위하여 개발한 교전 수준 시뮬레이터에 대해서 표적탐지 여부의 확률적 접근 방법을 적용한 개념 및 그 예시를 소개하고 있다. 소나 방정식에 의해서 산출되는 SE(Signal excess)을 이용하여 표적의 존재 여부($H_0$ 혹은 $H_1$)에 따른 확률 분포 함수(PDF, Probability density function)을 유도하였다. 이후 Neyman-Pearson 탐지기에 따라 $P_{FA}$(Probability of false alarm)을 만족하는 $P_D$(Probablity of detection)을 구하고 탐지 여부를 확률적으로 판단하도록 설계하였다. 표적의 탐지와 관련된 현실적인 접근방법을 도입함으로써 시뮬레이터의 충실도를 높일 수 있었으며, 실험 결과는 전술 구상의 보조 정보로 활용할 수 있을 것이라 예상한다.
기계학습을 이용하는 침입 탐지 시스템의 성능은 특징 집합의 구성과 크기에 크게 좌우된다. 탐지율과 같은 시스템의 탐지 정확도는 특징 집합의 구성에, 학습 및 탐지 시간은 특징 집합의 크기에 의존한다. 따라서 즉각적인 대응이 필수인 침입 탐지 시스템의 실시간 탐지가 가능하도록 하려면, 특징 집합은 크기가 작으면서도 적절한 특징들로 구성하여야 한다. 본 논문은 실시간 탐지를 위한 특징 집합 선택 문제를 해결하기 위해 사용했던 기존의 다목적 유전자 알고리즘에 특징 간의 Pearson 상관계수를 함께 사용하면 탐지율을 거의 낮추지 않으면서도 특징 집합의 크기를 줄일 수 있음을 보인다. 제안한 방법의 성능평가를 위해 NSL_KDD 데이터를 사용하여 10가지 공격 유형과 정상적인 트래픽을 구별하도록 인공신경망을 설계, 구현하여 실험한다.
Journal of the Korean Data and Information Science Society
/
제17권4호
/
pp.1129-1139
/
2006
Pearson's correlation coefficient and vector similarity are generally applied to The users' similarity weight of user based recommender system. This study is needed to find that the correlation coefficient of similarity weight is effected by the number of pair response and significance probability. From the classified correlation coefficient by the significance probability test on the correlation coefficient and pair of response, the change of MAE is studied by comparing the predicted precision of the two. The results are experimentally related with the change of MAE from the significant correlation coefficient and the number of pair response.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.