• 제목/요약/키워드: Patterned chemical surface

검색결과 97건 처리시간 0.011초

불규칙 패턴 에칭에 의한 표면 형상 제어와 광학적 특성 (Optical Property and Surface Morphology Control by Randomly Patterned Etching)

  • 김성수;이정우;전법주
    • 한국전기전자재료학회논문지
    • /
    • 제30권12호
    • /
    • pp.800-805
    • /
    • 2017
  • Randomly patterned and wet chemical etching processes were used to treat anti-glare of display cover glasses. The surface and optical properties of grain size and surface morphology controlled by randomly patterned etching and wet chemical solution etching were investigated. The surface morphology and roughness of the etched samples were examined using a spectrophotometer and a portable surface roughness (Ra) measuring instrument, respectively. The gloss caused by reflection from the glass surface was measured at $60^{\circ}$ using a gloss meter. The surface of the sample etched by the doctor-blade process was more uniform than that obtained from a screen pattern etching process at gel state etching process of the first step. The surface roughness obtained from the randomly patterned etching process depended greatly on the mesh size, which in turn affected the grain size and pattern formation. The surface morphology and gloss obtained by the etching process in the second step depended primarily on the mesh size of the gel state etching process of the first step. In our experimental range, the gloss increased on decreasing the grain size at a lower mesh size for the first step process and for longer reaction times for the second step process.

Preparation of Honeycomb-patterned Polyaniline-MWCNT/Polystyrene Composite Film and Studies on DC Conductivity

  • Kim, Won-Jung;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2345-2351
    • /
    • 2012
  • Conductive honeycomb-patterned polystyrene (PS) thin films were prepared by the formation of a polyaniline (PANI) thin layer on the surface of the patterned PS thin films using simple one-step chemical oxidative polymerization of aniline. The in situ chemical oxidation polymerization of aniline hydrochloride solution on the patterned structure of the PS films was conducted in the presence of multiwalled carbon nanotubes (MWCNT) to prepare the PANI-MWCNT/PS composite film. The concentration (wt %) of MWCNT was varied in the range of 1%-3% by weight. The dependence of surface morphology of the PANI/PS and PANI-MWCNT/PS composite film to the polymerization time was observed by scanning electron microscopy. The room temperature DC conductivity was obtained by the four-probe technique. The conductivity of the PANI-MWCNT/PS composite film was affected both by the MWCNT concentration and polymerization time. In addition, DC electrical field was loaded during the oxidative polymerization to affect the distribution of the MWCNT included in the composite film, varying the loading voltage in the range of 0.1-3.0 V. The conductivity of the PANI-MWCNT/PS composite film was increased as loading voltage rose. However, this increase stops at a voltage higher than the critical value.

Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석 (Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD)

  • 김선운;김제원
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

알루미늄 박막의 화학기계적연마 가공에 관한 연구 (Chemical Mechanical Polishing of Aluminum Thin Films)

  • 조웅;안유민;백창욱;김용권
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.49-57
    • /
    • 2002
  • The effect of mechanical parameters on chemical mechanical polishing (CMP) of blanket and patterned aluminum thin films are investigated. CMP process experiments are conducted using the soft pad and the slurry mainly composed of acid solution and A1$_2$O$_3$ abrasive. The result for the blanket film showed that as the concentration of abrasive in slurry is increased, the surface roughness gets worse but the waviness gets better. The planarity of the patterned Al films is slowly improved by CMP when the width of and gap between the patterns are relatively small. It is tried to find the optimized CMP process conditions by that the patterned Al thin film can be planarized with fine surface. The most satisfiable film surface is obtained when the applied pressure is low (10kPa) and the abrasive concentration is relatively high (5wt%).

습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED (GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching)

  • 김도형;이용곤;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.7-11
    • /
    • 2011
  • Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

Dual Surface Modifications of Silicon Surfaces for Tribological Application in MEMS

  • Pham, Duc-Cuong;Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • 제8권2호
    • /
    • pp.26-28
    • /
    • 2007
  • Si(100) surfaces were topographically modified i.e. the surfaces were patterned at micro-scale using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and microchannels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating a thin DLC film. The surfaces were then evaluated for their friction behavior at micro-scale in comparison with those of bare Si(100) flat, DLC coated Si(100) flat and uncoated patterned surfaces. Experimental results showed that the chemically treated (DLC coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the surfaces. This indicates that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro-Electro-Mechanical-Systems (MEMS).

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers

  • Kim, Sung-Kyu;Kim, Byung-Gee;Lee, Ji-Hye;Lee, Chang-Soo
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.232-239
    • /
    • 2009
  • This paper describes the simple nanopatterning of proteins on polyelectrolyte surfaces using microcontact printing with a nanopatternable, hydrophilic composite nanomold. The composite nanomold was easily fabricated by blending two UV-curable materials composed of Norland Optical Adhesives(NOA) 63 and poly(ethylene glycol) dimethacrylate(PEG-DMA). NOA 63 provided stable nanostructure formation and PEG-DMA induced high wettability of proteins in the nanomold. Using the composite mold and functionalized surface with polyelectrolytes, the fluorescent, isothiocyanate-tagged, bovine serum albumin(FITC-BSA) was successfully patterned with 8 nm height and 500 nm width. To confirm the feasibility of the protein assay on a nanoscale, a glycoprotein-lectin assay was successfully demonstrated as a model system. As expected, the lectins correctly recognized the nano-patterned glycoproteins such as chicken ovalbumin. The simple preparation of composite nanomold and functionalized surface with a universal platform can be applied to various biomolecules such as DNA, proteins, carbohydrates, and other biomolecules on a nanoscale.

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • 제1권4호
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

국부적 양극산화 기술 동향 (Technological Trends in a local anodization)

  • 강광모;최수민;나윤채
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.