DOI QR코드

DOI QR Code

GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching

습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED

  • Kim, Do-Hyung (Division of Electronic Engineering, Sunmoon University) ;
  • Yi, Yong-Gon (Division of Electronic Engineering, Sunmoon University) ;
  • Yu, Soon-Jae (Division of Electronic Engineering, Sunmoon University)
  • 김도형 (선문대학교 공과대학 전자공학과) ;
  • 이용곤 (선문대학교 공과대학 전자공학과) ;
  • 유순재 (선문대학교 공과대학 전자공학과)
  • Received : 2010.11.29
  • Accepted : 2010.12.15
  • Published : 2011.01.01

Abstract

Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

Keywords

References

  1. T. V. Cuong, H. S. Cheong, H. G. Kim. H. Y. Kim. C. H. Hong, E. K. Suh, H. K. Cho, H. K. and B. H. Kong, Appl. Phys. Lett. 90, 131107 (2007). https://doi.org/10.1063/1.2714203
  2. D-H. Kang, E-S. Jang, H. Song, D-W. Kim, J-S. Kim, I-H. Lee, S. Kannappan, and C-R. Lee , J. Korean Phys. Soc. 52, 1895 (2008). https://doi.org/10.3938/jkps.52.1895
  3. F. Dwikusuman, D. Saulys, and T. F. Kuech, J. Electrochem. Soc. 149 (11), G603 (2002). https://doi.org/10.1149/1.1509072
  4. K. Hiramatsu, J. Phys. Condens. Matter. 13, 6961 (2001). https://doi.org/10.1088/0953-8984/13/32/306
  5. B. Beaumont, P. Vennegues & P. Gibart, Phys. Stat. Sol. (b) 227, 1 (2001). https://doi.org/10.1002/1521-3951(200109)227:1<1::AID-PSSB1>3.0.CO;2-Q
  6. K. Tadatomo, H. Okinawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Jpn. J. Appl. Phys. 40, L583 (2001). https://doi.org/10.1143/JJAP.40.L583
  7. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, M. Kato, T. Taguchi, Jpn. J. Appl. Phys. 41, L1431 (2002). https://doi.org/10.1143/JJAP.41.L1431
  8. Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang and S. C. Shei, J. Cryst. Growth 261, 466 (2004). https://doi.org/10.1016/j.jcrysgro.2003.09.046
  9. Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, and S. N. Yen, Mater. Sci. and Eng.B 122, 184 (2005). https://doi.org/10.1016/j.mseb.2005.05.019
  10. Z. H. Feng, Y. D. Qi, Z. D. Lu and Kei May Lau, J. Cryst. Growth 272, 327 (2004). https://doi.org/10.1016/j.jcrysgro.2004.08.070
  11. S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Solid-State Electron 47, 359 (2003).
  12. Ji-Myon Lee, Ki-Myung Chang, Sang-Woo Kim, Chul-Huh, In-Hwan Lee, and Seong-Ju Park, Appl. Phys. Lett. 87, 7667 (2000).
  13. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shu, L. Zhang, R. Hickman, and J. M. Van Hove, Appl. Phys. Lett. 75, 2569 (1999). https://doi.org/10.1063/1.125080
  14. H. S. Kim, J. S. Hwang, P. J. Chung, J. Korean Chem. Soc. 39, 1 (1995).
  15. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. -H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. -W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. -S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser and D. Collins, Appl. Phys. Lett. 75, 2365 (1999). https://doi.org/10.1063/1.125016