DOI QR코드

DOI QR Code

Simulation of Optical Characteristics of 1.3 μm GaAs-Based GaAsSb/InGaAs and GaAsSb/InGaNAs Quantum Well Lasers for Optical Communication

광통신용 GaAs 기반 1.3 μm GaAsSb/InGaAs와 GaAsSb/InGaNAs 양자우물 레이저의 광학적특성 시뮬레이션

  • 박승환 (대구가톨릭대학교 전자공학과)
  • Received : 2010.08.23
  • Accepted : 2010.12.06
  • Published : 2011.01.01

Abstract

Optical gain characteristics of $1.3{\mu}m$ type-II GaAsSb/InGaNAs/GaAs trilayer quantum well structures were studied using multi-band effective mass theory. The results were compared with those of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structures. In the case of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure, the energy difference between the first two subbands in the valence band is smaller than that of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. Also, $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure shows larger optical gain than $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. This means that GaAsSb/InGaNAs/GaAs system is promising as long-wavelength optoelectronic devices for optical communication.

Keywords

References

  1. T. Anan, K. Nishi, S. Suguo, M. Yamada, K. Tokutome, and A. Gomyo, Electron. Lett. 34, 2127 (1998). https://doi.org/10.1049/el:19981451
  2. T. Anan, M. Yamada, K. Tokutome, S. Suguo, K. Nishi, and A. Kamei, Electron. Lett. 35, 903 (1999). https://doi.org/10.1049/el:19990633
  3. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, Appl. Phys. Lett. 67, 757 (1995). https://doi.org/10.1063/1.115216
  4. M. Kondow, T. Kitatani, and K. Uomi, IEEE J. Sel. Top. Quantum Electron. 3, 719 (1997). https://doi.org/10.1109/2944.640627
  5. S. W. Ryu and P. D. Dapkus, Electron. Lett. 38, 564 (2002). https://doi.org/10.1049/el:20020410
  6. M. Kudo, K. Ouchi, J. Kasai, and T. Mishima, Jpn. J. Appl. Phys. 41, 1040(2002). https://doi.org/10.1143/JJAP.41.1040
  7. S. H. Park, H. M. Kim, and J. J. Kim, J. Korean Phys. Soc. 50, 1081 (2007).
  8. M. Kudo, K. Ouchi, J. Kasai, and T. Mishima, Jpn. J. Appl. Phys. 41, 1040 (2002). https://doi.org/10.1143/JJAP.41.1040
  9. J-Y. Yeha L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, Appl. Phys. Lett. 88, 051115 (2006). https://doi.org/10.1063/1.2171486
  10. C. Y-P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). https://doi.org/10.1103/PhysRevB.46.4110
  11. S. H. Park, S. L. Chuang, J. Minch, and D. Ahn, Semicond. Sci. Technol. 15, 203 (2000). https://doi.org/10.1088/0268-1242/15/2/321
  12. W. Braun, P. Dowd, C-Z. Guo, S-L. Chen, C. M. Ryu, U. Koelle, S. R. Johnson, Y-H. Zhang, J. W. Tomm, T. Elsasser, and D. J. Smith, J. Appl. Phys. 88, 3004 (2000). https://doi.org/10.1063/1.1287233
  13. W. W. Chow, S. W. Koch, and M. Sergent III, Semiconductor-Laser Physic (Springer, Berlin, 1994)
  14. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  15. D. Ahn, Prog. Quantum Electron. 21, 249 ( 1997). https://doi.org/10.1016/S0079-6727(97)00003-7
  16. G. Liu and S. L. Chuang, Phys. Rev. B 65, 165220 (2002). https://doi.org/10.1103/PhysRevB.65.165220
  17. G. Liu, S. L. Chuang, and S. H. Park, J. Appl. Phys. 88, 5554 (2000). https://doi.org/10.1063/1.1319328
  18. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5816 (2001).
  19. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003). https://doi.org/10.1063/1.1600519