DOI QR코드

DOI QR Code

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD

Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석

  • Published : 2005.10.01

Abstract

GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

Keywords

References

  1. F. Scholz, V. Harle, H. Bolay, F. Steuber, B. Kaufmann, G. Reyher, A. Dornen, O. Gfrorer, S. J. Im and A. Hangleiter, Solid-State Electron., 41, 141 (1997) https://doi.org/10.1016/S0038-1101(96)00154-2
  2. K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, Jpn. J. Appl. Phys., 43, 5809 (2004) https://doi.org/10.1143/JJAP.43.5809
  3. Y. Kawakami, Y. Narukawa, K. Omae, SG. Fujita and S. Nakamura, Phys. Satatus Solidi, (a) 178, 331 (2000) https://doi.org/10.1002/1521-396X(200003)178:1<331::AID-PSSA331>3.0.CO;2-9
  4. R. Zheng and T. Taguchi, Proc. of SPIE, 4996, 105 (2003) https://doi.org/10.1117/12.476554
  5. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, Appl. Phys. Lett., 84, 855 (2004) https://doi.org/10.1063/1.1645992
  6. C. Huh, K. Lee, E. Kang and S. Park, J. Appl. Phys., 93, 9383 (2003) https://doi.org/10.1063/1.1571962
  7. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, IEEE Photon. Technol. Lett., 16, 1002 (2004) https://doi.org/10.1109/LPT.2004.824667
  8. J. Shakya, K. H. Kim, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 85, 142 (2004) https://doi.org/10.1063/1.1768297
  9. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons and M. M. Sigalas, Appl. Phys. Lett., 84, 3885 (2004) https://doi.org/10.1063/1.1738934
  10. S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim and H. Cho, J. Crys. Growth, 262, 7 (2004) https://doi.org/10.1016/j.jcrysgro.2003.10.009
  11. J. Han, T. B. Ng, R. M. Biefeld, M. H. Crawford and D. M. Follstaedt, Appl. Phys. Lett., 71, 3114 (1997) https://doi.org/10.1063/1.120263
  12. B. Beaumont, Ph. Vennegus and P. Gibart, Phys. Stat. Sol., (b) 227, 1 (2001)
  13. X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, Appl. Phys. Lett., 68, 1371 (1996) https://doi.org/10.1063/1.116083
  14. Quan Li, I. W. Kim, S. A. Barnett and L. D. Marks, J. Mater. Res., 17, 1224 (2002) https://doi.org/10.1557/JMR.2002.0181
  15. J. Bai, T. Wang and S. Sakai, J. Appl. Phys., 88, 4729 (2000) https://doi.org/10.1063/1.1311831
  16. I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada and T. Mukai, Proc. of SPIE, 1587, 1 (2004)