• Title/Summary/Keyword: Pathogenic mechanisms

Search Result 170, Processing Time 0.028 seconds

Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease

  • Jihyun Cha;Ji Hwan Yun;Ji Hye Choi;Jae Ho Lee;Byung Tae Choi;Hwa Kyoung Shin
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.70-81
    • /
    • 2024
  • Objectives: Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods: This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results: According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion: This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.

Prevention of Alcoholic Liver Disease by Using Probiotics (프로바이오틱스 섭취를 통한 알코올성 간 질환의 완화)

  • Lee, In Ok;Kim, Sae Hun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Probiotics have been extensively studied for their beneficial effects on human health. In particular, Lactobacillus and Bifidobacterium strains have gained considerable attention as major groups of probiotic bacteria that improve gastrointestinal health. However, emerging evidence suggests that probiotics offer benefits beyond those observed in the gut recent studies suggest that probiotics and/or their components exert favorable effects on alcoholic liver disease (ALD) pathogenesis such as decreasing intestinal permeability, inhibiting pathogenic bacteria growth, increasing the activity of alcohol metabolism enzymes, modulating the adaptive immune system, and suppressing fatty acid synthesis genes. In this review, we discuss the results of in vivo and in vitro studies that have examined the use of probiotics to prevent ALD, primarily focusing on those that explore the cellular and molecular mechanisms underlying the activities of promising probiotic strains. The evidence presented in this review could help in screening for probiotic strains that have protective effects in ALD patients and in further elucidating the mechanisms of their actions.

  • PDF

Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus

  • Song, Fu-Qiang;Liu, Ying;Kong, Xiang-Shi;Chang, Wei;Song, Ge
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1571-1578
    • /
    • 2013
  • Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.

Apoptotic Effects of the B Subunit of Bacterial Cytolethal Distending Toxin on the A549 Lung Cancer Cell Line

  • Yaghoobi, Hajar;Bandehpour, Mojgan;Kazemi, Bahram
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.299-304
    • /
    • 2016
  • Cytolethal distending toxin (CDT) is a secreted tripartite genotoxin produced by many pathogenic gram-negative bacteria. It is composed of three subunits, CdtA, CdtB and CdtC, and CdtB-associated deoxyribonuclease (DNase) activity is essential for the CDT toxicity. In the present study, to design a novel potentially antitumor drug against lung cancer, the possible mechanisms of cdtB anticancer properties were explored in the A549 human lung adenocarcinoma cell line. A recombinant plasmid pcDNA3.1/cdtB was constructed expressing CdtB of human periodontal bacterium Aggregatibacter actinomycetemcomitans and investigated for toxic properties in A549 cells and possible mechanisms. It was observed that plasmid pcDNA3.1/cdtB caused loss of cell viability, morphologic changes and induction of apoptosis. Furthermore, measurement of caspase activity indicated involvement of an intrinsic pathway of cell apoptosis. Consequently, the recombinant plasmid pcDNA3.1/cdtB may have potential as a new class of therapeutic agent for gene therapy of lung cancer.

Prevention of Inflammatory Bowel Disease using Fermented Milk Including Probiotics (프로바이오틱스 섭취를 통한 염증성 장 질환의 완화)

  • Lee, Jin;Yun, Hyun-Sun;Kim, Sae-Hun;Jeon, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • For centuries, probiotics have been known to promote health and prevent diseases. In recent times, modulation of diseases related to the immune function by probiotics has been recognized as very important to the health of the host's gut. Inflammatory bowel diseases (IBDs) are the most frequently studied diseases in which probiotic administration has been tested as a potential therapy. Various in vitro and in vivo studies have been performed. The studies discussed in this review suggest several mechanisms: probiotics could modulate the gut microflora by competing with disease-causing pathogenic bacteria and could directly regulate the mucosal immune system, which activates the innate and adaptive immune systems. In addition, human clinical trials have shown alleviation of disease symptoms of ulcerative colitis (UC), Crohn's disease, etc. This study aimed to understand the molecular mechanisms underlying immune modulation by probiotics and review studies on the functional aspect of IBD alleviation by probiotics. With more scientific studies confirming the effect of probiotics, this therapy holds promise for use in alternative medicine and/or pharmaceutical preparations, given the long history of safe consumption of probiotics.

  • PDF

Epigenetic regulation of fungal development and pathogenesis in the rice blast fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.19-19
    • /
    • 2018
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed first to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Based on the database entries, we carried out functional analysis of genes encoding histone modifying enzymes. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes is followed by ChIP-seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms

  • Kim, Jaekwang;Yoon, Hyejin;Basak, Jacob;Kim, Jungsu
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.767-776
    • /
    • 2014
  • Alzheimer's disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-${\alpha}$ ($A{\alpha}$) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ${\varepsilon}4$ allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates $A{\alpha}$ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on $A{\alpha}$ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.

A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD

  • Davin Lee;Hae Chan Jeong;Seung Yeol Kim;Jin Yong Chung;Seok Hwan Cho;Kyoung Ah Kim;Jae Ho Cho;Byung Su Ko;In Jun Cha;Chang Geon Chung;Eun Seon Kim;Sung Bae Lee
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100005.1-100005.15
    • /
    • 2024
  • Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi (여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능)

  • Kim, Hae-Ryoung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.437-443
    • /
    • 2016
  • In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

FRMD7-associated Infantile Nystagmus Syndrome

  • Choi, Kwang-Dong;Choi, Jae-Hwan
    • Journal of Interdisciplinary Genomics
    • /
    • v.2 no.2
    • /
    • pp.13-17
    • /
    • 2020
  • Infantile nystagmus syndrome (INS) is a genetically heterogeneous disorder. To date, more than 100 genes have been reported to cause INS and there is significant overlap in phenotypic characteristics. The most common form of X-linked INS is attributed to FRMD7 at Xq26. Recent advances in molecular genetics have facilitated the identification of pathogenic variants of FRMD7 and the investigation for underlying mechanisms of FRMD7-associated INS. This review summarizes genetic and clinical features of FRMD7-associated INS, and introduces updates on the pathogenesis of FRMD7 mutation.