DOI QR코드

DOI QR Code

Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus

  • Song, Fu-Qiang (Key Laboratory of Microbiology, Life Science College, Heilongjiang University) ;
  • Liu, Ying (Key Laboratory of Microbiology, Life Science College, Heilongjiang University) ;
  • Kong, Xiang-Shi (Key Laboratory of Microbiology, Life Science College, Heilongjiang University) ;
  • Chang, Wei (Key Laboratory of Microbiology, Life Science College, Heilongjiang University) ;
  • Song, Ge (Key Laboratory of Microbiology, Life Science College, Heilongjiang University)
  • Published : 2013.03.30

Abstract

Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.

Keywords

References

  1. Ali BH, Ziada A, Blunden G (2009). Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol, 47, 1-8. https://doi.org/10.1016/j.fct.2008.07.001
  2. Ames BN (1983). Dietary carcinogens and anticarcinogens:oxygen radicals and degenerative disease. Science, 221, 1256-64. https://doi.org/10.1126/science.6351251
  3. Aruoma OI (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc, 75, 199-212. https://doi.org/10.1007/s11746-998-0032-9
  4. Babitskaia VG, Shcherba VV, Filimonova TV, et al (2000). Melanin pigments of the fungi Paecilomyces variotii and Aspergillus carbonarius. Prikl Biokhim Mikrobiol, 36, 153-9.
  5. Bae JS, Jang KH, Yim H, Jin HK (2005). Polysaccharides isolated from Phellinus gilvus inhibit melanoma growth in mice. Cancer Lett, 218, 43-52. https://doi.org/10.1016/j.canlet.2004.08.002
  6. Bernards R (2012). A missing link in genotype-directed cancer therapy. Cell, 151, 465-8. https://doi.org/10.1016/j.cell.2012.10.014
  7. Bhatnagar D (1998). Lipid-lowering drugs in the management of hyperlipidaemia. Pharmacol Ther, 79, 205-30. https://doi.org/10.1016/S0163-7258(98)00018-7
  8. Bolwell PP, Page A, Pislewska M, et al (2001). Pathogenic infection and the oxidative defenses in plant apoplast. Protoplasma, 217, 20-32. https://doi.org/10.1007/BF01289409
  9. Burczyk J, Gawron A, Slotwinska M, et al (1996). Antimitotic activity of aqueous extracts of Inonotus obliquus. Boll Chim Farm, 135, 306-9.
  10. Burns J, Gardner PT, Matthews D, et al (2001). Extraction of phenolics and changes in antioxidant activity of red wine during vinification. J Agric Food Chem, 49, 5797-808. https://doi.org/10.1021/jf010682p
  11. Chang JS, Son JK, Li G, et al (2004). Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol A9, isolated from Hypsizigus marmoreus. Cancer Lett, 212, 7-14. https://doi.org/10.1016/j.canlet.2004.03.013
  12. Chen CF, Xiang XY, Qi G, et al (2007b). Study on growth medium favoring the accumulation of exopolysaccharides in submerged culture of Inonotus obliquus. Chin Tradit Herbal Drugs, 38, 358-61.
  13. Chen C, Zheng W, Gao XW, et al (2007a). Aqueous extract of Inonotus obliquus (Fr.) Pilat (Hymenochaetace) significantly inhibits the growth of sarcoma 180 by inducing apoptosis. Am J Pharmcol Toxicol, 2, 10-7. https://doi.org/10.3844/ajptsp.2007.10.17
  14. Chen H, Xu X, Zhu Y (2010). Optimization of hydroxyl radical scavenging activity of exo-polysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology. J Microbiol Biotechnol, 20, 835-43.
  15. Chen W, He F, Li Y (2006). The apoptosis effect of hispolon from Phellinus linteus (Berkeley and Curtis) Teng on human epidermoid KB cells. J Ethnopharmacol, 105, 280-5. https://doi.org/10.1016/j.jep.2006.01.026
  16. Choi SY, Hur SJ, An CS, et al (2010). Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. J Biomed Biotechnol, 2010, 943516.
  17. Chung MJ, Chung CK, Jeong Y, et al (2010). Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr Res Pract, 4, 177-82. https://doi.org/10.4162/nrp.2010.4.3.177
  18. Cui Y, Kim DS, Park KC (2005). Antioxidant effect of Inonotus obliquus. J Ethnopharmacol, 96, 79-85. https://doi.org/10.1016/j.jep.2004.08.037
  19. Diaz MN, Frei B, Vita A, et al (1997). Antioxidants and atherosclerotic heart disease. N Engl J Med, 337, 408-16. https://doi.org/10.1056/NEJM199708073370607
  20. Elledge SJ (1996). Cell cycle checkpoints: preventing an identity crisis. Science, 274, 1664-72. https://doi.org/10.1126/science.274.5293.1664
  21. Fan L, Ding S, Ai L, et al (2012). Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr Polym, 90, 870-4. https://doi.org/10.1016/j.carbpol.2012.06.013
  22. Fidler IJ (2003).The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer, 3, 453-8. https://doi.org/10.1038/nrc1098
  23. Fremont L (2000). Biological effects of resveratrol. Life Sci, 66, 663-73. https://doi.org/10.1016/S0024-3205(99)00410-5
  24. Gao XL, Gao YJ, Wu GH (2006). Review on function property of Inonotus obliquus. Food & Machinery, 22, 126-31.
  25. Gey KF (1990). The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem Soc Trans, 18, 1041-5.
  26. Gonindard C, Bergonzi C, Denier C, et al (1997). Synthetic hispidin, a PKC inhibitor, is more cytotoxic towards cancer cells than normal cells in vitro. Cell Biol Toxicol, 13, 141-53. https://doi.org/10.1023/A:1007321227010
  27. Ham SS, Kim SH, Moon SY, et al (2009). Antimutagenic effects of subfractions of Chago mushroom (Inonotus obliquus) extract. Mutat Res, 672, 55-9. https://doi.org/10.1016/j.mrgentox.2008.10.002
  28. Ham SS, Oh SW, Kim YK, et al (2003). Chung, Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. J Kor Soc Food Sci Nutr, 32, 1088-94. https://doi.org/10.3746/jkfn.2003.32.7.1088
  29. Handa N, Yamada T, Tanaka R (2010). An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry, 71, 1774-9. https://doi.org/10.1016/j.phytochem.2010.07.005
  30. Hoshino T, Tronsmo AM, Matsumoto N, et al (1998). Freezing resistance among isolates of a psychrophilic fungus, Typhula ishikariensis, from Norway. Proc NIPR Symp Polar Biol, 11, 112-8.
  31. Huang LN (2002). The mysterious folk medicinal fungus Inonotus obliquus. Edible Fungi China, 21, 7-8.
  32. Huang SQ, Ding S, Fan L (2012). Antioxidant activities of five polysaccharides from Inonotus obliquus. Int J Biol Macromol, 50, 1183-7. https://doi.org/10.1016/j.ijbiomac.2012.03.019
  33. Hu H, Zhang Z, Lei Z, et al (2009). Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. J Biosci Bioeng, 107, 42-8. https://doi.org/10.1016/j.jbiosc.2008.09.004
  34. Hsieh TC, Wu P, Park S, et al (2006). Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity TM (PSP). BMC Complement Altern Med, 6, 30. https://doi.org/10.1186/1472-6882-6-30
  35. Hyun KW, Jeong SC, Lee DH, et al (2006). Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides, 27, 1173-8. https://doi.org/10.1016/j.peptides.2005.10.005
  36. Jin G, Yang E, Jin Q, et al (2004). Studies on antitumor activities of Fuscoporia obique polysac charide. J Med Sci Yanbian Univ, 27, 257-9.
  37. Kahlos K, Kangas L, Hiltunen R (1987). Antitumour activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta Pharm Fenn, 96, 33-40.
  38. Keller KE, Tan IS, Lee YS (2012). SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science, 338, 1069-72. https://doi.org/10.1126/science.1224409
  39. Kim DS, Baek N-I, Oh SR, et al (1997). Anticomplementary activity of ergosterol peroxide from Naematoloma fasciculare and reassignment of NMR data. Arch Pharm Res, 20, 201-5. https://doi.org/10.1007/BF02976145
  40. Kim HG, Yoon DH, Lee WH, et al (2007). Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharideinduced RAW 264.7 macrophage. J Ethnopharmacol, 114, 307-15. https://doi.org/10.1016/j.jep.2007.08.011
  41. Kim YH, Park JW, Lee JY, et al (2003). Bcl-2 overexpression prevents daunorubicin-induced apoptosis through inhibition of XIAP and Akt degradation. Biochem Pharmacol, 66, 1779-86. https://doi.org/10.1016/S0006-2952(03)00545-8
  42. Kim YO, Han SB, Lee HW, et al (2005). Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci, 77, 2438-56. https://doi.org/10.1016/j.lfs.2005.02.023
  43. Kim YO, Park HW, Kim JH, et al (2006). Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci, 79, 72-80. https://doi.org/10.1016/j.lfs.2005.12.047
  44. Lee IK, Kim YS, Jang YW, et al (2007). New antioxidant polyphenols from medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett, 17, 6678-81. https://doi.org/10.1016/j.bmcl.2007.10.072
  45. Lee SH, Hwang HS, Yun JW (2009). Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT-29 human colon cancer cells. Phytother Res, 23, 1784-9. https://doi.org/10.1002/ptr.2836
  46. Liang L, Zhang Z, Wang H (2009). Antioxidant activities of extracts and subfractions from Inonotus obliquus. Intl J Food Sci Nutr, 60, 175-84. https://doi.org/10.1080/09637480903042279
  47. Li XY, Cui JC, Sun DZ, et al (2003). Anti-proliferation and cell apoptosis induction of Inonotus obliquus extracts on gastric cancer cell line MGC-803. J Fungal Res, 1, 17-23.
  48. Lu X, Chen H, Dong P, et al (2009). Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J Sci Food Agr, 90, 276-80.
  49. Magee JA, Piskounova E, Morrison SJ (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283-96. https://doi.org/10.1016/j.ccr.2012.03.003
  50. Mantena SK, Sharma SD, Katiyar SK (2006). Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5, 296-308. https://doi.org/10.1158/1535-7163.MCT-05-0448
  51. Mu H, Zhang A, Zhang W, et al (2012). Antioxidative Properties of Crude Polysaccharides from Inonotus obliquus. Int J Mol Sci, 13, 9194-206. https://doi.org/10.3390/ijms13079194
  52. Nakamura S, Iwami J, Matsuda H, et al (2009). Absolute stereostructures of inoterpenes A-F from sclerotia of Inonotus obliquus. Tetrahedron, 65, 2443-50. https://doi.org/10.1016/j.tet.2009.01.076
  53. Nakajima Y, Nishida H, Matsugo S, et al (2009). Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (Persoon) Pilat]. J Med Food, 12, 501-7. https://doi.org/10.1089/jmf.2008.1149
  54. Nakajima Y, Sato Y, Konishi T (2007). Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull (Tokyo), 55, 1222-6. https://doi.org/10.1248/cpb.55.1222
  55. Nakata T, Yamada T, Taji S, et al (2007). Structure determination of inonotsuoxides A and B and in vivoantitumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem, 15, 257-64. https://doi.org/10.1016/j.bmc.2006.09.064
  56. Nariculam J, Freeman A, Bott S, et al (2009). Utility of tissue microarrays for profiling prognostic biomarkers in clinically localized prostate cancer: the expression of BCL-2, E-cadherin, Ki-67 and p53 as predictors of biochemical failure after radical prostatectomy with nested control for clinical and pathological risk factors. Asian J Androl, 11, 109-18. https://doi.org/10.1038/aja.2008.22
  57. Nawy T (2012). Cancer gene discovery goes viral. Nat Methods, 9, 868. https://doi.org/10.1038/nmeth.2155
  58. Nomura M, Takahashi T, Uesugi A, et al (2008). Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res, 28, 5A 2691-6.
  59. Pardee AB (1989). G1 events and regulation of cell proliferation. Science, 246, 603-8. https://doi.org/10.1126/science.2683075
  60. Park I, Chung S, Lee K, et al (2004). An antioxidant hispidin from the mycleial cultures of Phellinus linteus. Arch Pharm Res, 27, 615-8. https://doi.org/10.1007/BF02980159
  61. Park YM, Won JH, Kim YH, et al (2005). In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J Ethnopharmacol, 101, 120-8. https://doi.org/10.1016/j.jep.2005.04.003
  62. Park EJ, Zhao YZ, Kim YC, et al (2007). Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH 2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur J Pharmacol, 559, 115-23. https://doi.org/10.1016/j.ejphar.2007.01.024
  63. Patel S, Goyal A (2012). Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2, 1-15.
  64. Patel P, Chen EI (2012). Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol (Lausanne), 3, 125.
  65. Rhee SJ, Cho SY, Kim KM, et al (2008). A comparative study of analytical methods for alkali-soluble $\beta$-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT-Food Sci Technol, 41, 545-9. https://doi.org/10.1016/j.lwt.2007.03.028
  66. Rzymowska J (1998). The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities. Boll Chim Farm, 137, l3-15.
  67. Sarikurkcu C, Tepe B, Yamac M (2008). Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir-Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour Technol, 99, 6651-5. https://doi.org/10.1016/j.biortech.2007.11.062
  68. Schwabe RF, Wang TC (2012). Cancer. Bacteria deliver a genotoxic hit. Science, 338, 52-3. https://doi.org/10.1126/science.1229905
  69. Seewaldt VL (2012). Cancer: Destiny from density. Nature, 490, 490-1. https://doi.org/10.1038/490490a
  70. Shibnev VA, Mishin DV, Garaev TM, et al (2011). Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bull Exp Biol Med, 151, 612-4. https://doi.org/10.1007/s10517-011-1395-8
  71. Shin Y, Tamai Y, Minoru T (2001). Chemical constituents of Inonotus obliquus. IV. Triterpene and steroids from cultured mycelia. Eurasian J Forest Res, 2, 27-30.
  72. Song Y, Hui J, Kou W, et al (2008). Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr Microbiol, 57, 454-62. https://doi.org/10.1007/s00284-008-9233-6
  73. Sun JE, Ao ZH, Lu ZM, et al (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol, 118, 7-13. https://doi.org/10.1016/j.jep.2008.02.030
  74. Sun Y, Yin T, Chen XH, et al (2011). In vitro antitumor activity and structure characterization of ethanol extracts from wild and cultivated Chaga medicinal mushroom, Inonotus obliquus (Pers.:Fr.) Pila't (Aphyllophoromycetideae). Int J Med Mushrooms, 13, 121-30. https://doi.org/10.1615/IntJMedMushr.v13.i2.40
  75. Swanton C (2004). Cell-cycle targeted therapies. Lancet Oncol, 5, 27-36. https://doi.org/10.1016/S1470-2045(03)01321-4
  76. Taji S, Yamada T, Wada S, et al (2005). Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem, 43, 2373-9.
  77. Taji S, Yamada T, Wada S, et al (2008). Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem, 43, 2373-9. https://doi.org/10.1016/j.ejmech.2008.01.037
  78. Ye M, Liu JK, Lu ZX, et al (2005). Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett, 579, 3437-43. https://doi.org/10.1016/j.febslet.2005.05.013
  79. Youn MJ, Kim JK, Park SY, et al (2008). Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol, 14, 511-7. https://doi.org/10.3748/wjg.14.511
  80. Youn M-J, Kim J-K, Park S-Y, et al (2009). Potential anticancer properties of the water extract of Inontus obliquus by induction of apotosis in melanoma B16-F10 cells. J Ethnopharmacol, 121, 221-8. https://doi.org/10.1016/j.jep.2008.10.016
  81. Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa MC, et al (2011). Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit Rev Oncol Hematol, 80, 347-68. https://doi.org/10.1016/j.critrevonc.2011.01.004
  82. Wang QL, Lin M, Liu GT (2001). Antioxidative activity of natural isorhapontigenin. Jpn J Pharmacol, 87, 61-6. https://doi.org/10.1254/jjp.87.61
  83. Wasser SP (2002). Medicinal mushrooms as a source of antitumor and immunmodulating polysaccharrides. Appl Microbiol Biotechnol, 60, 258-74. https://doi.org/10.1007/s00253-002-1076-7
  84. Weinberg RA (1989). The Rb gene and the negative regulation of cell growth. Blood, 74, 529-32.
  85. Wijesekara I, Pangestuti R, Kim SK (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14-21. https://doi.org/10.1016/j.carbpol.2010.10.062
  86. Won DP, Lee JS, Kwon DS, et al (2011). Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus. Mol Cells, 31, 165-73. https://doi.org/10.1007/s10059-011-0022-x
  87. World Health Organization. Cancer. 2012, Retrieved from http://www.who.int /mediacentre/factsheets/fs297/en/.
  88. Zhang M, Cui SW, Cheung PCK, et al (2007). Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and activity. Trends Food Sci Technol, 18, 4-19. https://doi.org/10.1016/j.tifs.2006.07.013
  89. Zhao FQ, Piao HS (2006). Chemical Constituents of Inonotus obliquus. Lishizhen Med Materia Med Res, 17, 1178-80.
  90. Zhao F, Piao H, Han C (2004). Studies on anti-mutation active constituents of the Fuscoporia oblique. J Med Sci Yanbian Univ, 27, 250-2.
  91. Zheng W, Zhang M, Zhao Y, et al (2009). Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresour Technol, 100, 1327-35. https://doi.org/10.1016/j.biortech.2008.05.002
  92. Zhong XH, Sun DZ, Gao Y, et al (2010). The mechanisms of Anti-proliferation and cell apoptosis induction by Inonotus obliquus extracts on gastric cancer cell line MGC-2823. Chin J Gerontol, 30, 1998-9.
  93. Zhong XH, Wang LB, Sun DZ (2011). Effects of inotodiol extracts from Inonotus obliquus on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line A549. Chin J Integr Med, 17, 218-23. https://doi.org/10.1007/s11655-011-0670-x
  94. Zhu L, Skoultchi AI (2001). Coordinating cell proliferation and differentiation. Curr Opin Genet Dev, 11, 91-7. https://doi.org/10.1016/S0959-437X(00)00162-3
  95. Zhukovich EN, Semenova MY, Sharikova LA, et al (2010). Standardization of chaga tincture and befungin. Pharmaceutical Chem J, 44, 144-6. https://doi.org/10.1007/s11094-010-0418-5
  96. Zeng XL (2007). A Research into the Medical Effects and Chemical Components of I nonotus obliquus (Fr.) Pilat. J Guangdong Educ Inst, 27, 76-81.
  97. Zong A, Cao H, Wang F (2012). Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr Polym, 90, 1395-410. https://doi.org/10.1016/j.carbpol.2012.07.026
  98. Zucconi L, Ripa C, Selbmann L, et al (2002). Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol, 25, 500-5. https://doi.org/10.1007/s00300-002-0371-1

Cited by

  1. Antioxidant value and Antiproliferative Efficacy of Mitragynine and a Silane Reduced Analogue vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5659
  2. Momordica cochinchinensis Seed Extracts Suppress Migration and Invasion of Human Breast Cancer ZR-75-30 Cells Via Down-regulating MMP-2 and MMP-9 vol.15, pp.3, 2014, https://doi.org/10.7314/APJCP.2014.15.3.1105
  3. Inotodiol Inhabits Proliferation and Induces Apoptosis through Modulating Expression of cyclinE, p27, bcl-2, and bax in Human Cervical Cancer HeLa Cells vol.15, pp.7, 2014, https://doi.org/10.7314/APJCP.2014.15.7.3195
  4. Estonian folk traditional experiences on natural anticancer remedies: From past to the future vol.52, pp.7, 2014, https://doi.org/10.3109/13880209.2013.871641
  5. Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4256
  6. Antioxidant and antiproliferative activities of polysaccharide fractions from litchi pulp vol.6, pp.8, 2015, https://doi.org/10.1039/C5FO00249D
  7. cell cycle arrest in HT-29 human colon cancer cells vol.9, pp.2, 2015, https://doi.org/10.4162/nrp.2015.9.2.111
  8. Chemical composition and biological activity of triterpenes and steroids of chaga mushroom vol.10, pp.1, 2016, https://doi.org/10.1134/S1990750816010108
  9. Bioactivities and Health Benefits of Mushrooms Mainly from China vol.21, pp.7, 2016, https://doi.org/10.3390/molecules21070938
  10. Medicinal properties of fungi occurring on Betula sp. trees. A review vol.62, pp.3, 2016, https://doi.org/10.1515/hepo-2016-0018
  11. Optimization of Enzyme-assisted Extraction of Antitumor Polysaccharides from Hericium erinaceus mycelia vol.23, pp.1, 2017, https://doi.org/10.3136/fstr.23.31
  12. Three-Phase Partitioning for the Extraction and Purification of Polysaccharides from the Immunomodulatory Medicinal Mushroom Inonotus obliquus vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030403