References
- Bales, K.R., Verina, T., Dodel, R.C., Du, Y., Altstiel, L., Bender, M., Hyslop, P., Johnstone, E.M., Little, S.P., Cummins, D.J., et al. (1997). Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263-264. https://doi.org/10.1038/ng1197-263
- Basak, J.M., and Kim, J. (2010). Differential effects of ApoE isoforms on dendritic spines in vivo: linking an Alzheimer's disease risk factor with synaptic alterations. J. Neurosci. 30, 4526-4527. https://doi.org/10.1523/JNEUROSCI.0505-10.2010
- Bien-Ly, N., Gillespie, A.K., Walker, D., Yoon, S.Y., and Huang, Y. (2012). Reducing human apolipoprotein E levels attenuates age-dependent A accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32, 4803-4811. https://doi.org/10.1523/JNEUROSCI.0033-12.2012
- Bour, A., Grootendorst, J., Vogel, E., Kelche, C., Dodart, J.C., Bales, K., Moreau, P.H., Sullivan, P.M., and Mathis, C. (2008). Middleaged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav. Brain Res. 193, 174-182. https://doi.org/10.1016/j.bbr.2008.05.008
- Bourne, J.N., and Harris, K.M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47-67. https://doi.org/10.1146/annurev.neuro.31.060407.125646
- Buttini, M., Orth, M., Bellosta, S., Akeefe, H., Pitas, R.E., Wyss-Coray, T., Mucke, L., and Mahley, R.W. (1999). Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19, 4867-4880.
- Cambon, K., Davies, H.A., and Stewart, M.G. (2000). Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice. Neuroscience 97, 685-692. https://doi.org/10.1016/S0306-4522(00)00065-8
-
Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-
$\beta$ peptide clearance. Sci. Transl. Med. 3, 89ra57. - Chai, X., Forster, E., Zhao, S., Bock, H.H., and Frotscher, M. (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J. Neurosci. 29, 288-299. https://doi.org/10.1523/JNEUROSCI.2934-08.2009
- Chang, S., ran Ma, T., Miranda, R.D., Balestra, M.E., Mahley, R.W., and Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA 102, 18694-18699. https://doi.org/10.1073/pnas.0508254102
- Chen, Y., Durakoglugil, M.S., Xian, X. and Herz, J. (2010). ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc. Natl. Acad. Sci. USA 107, 12011-12016. https://doi.org/10.1073/pnas.0914984107
- Cingolani, L.A., and Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344-356. https://doi.org/10.1038/nrn2373
- Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923. https://doi.org/10.1126/science.8346443
- Cramer, P.E., Cirrito, J.R., Wesson, D.W., Lee, C.Y., Karlo, J.C., Zinn, A.E., Casali, B.T., Restivo, J.L., Goebel, W.D., James, M.J., et al. (2012). ApoE-directed therapeutics rapidly clear betaamyloid and reverse deficits in AD mouse models. Science 335, 1503-1506. https://doi.org/10.1126/science.1217697
- D'Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D.S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24, 471-479. https://doi.org/10.1016/S0896-6273(00)80860-0
- DeMattos, R.B., Curtiss, L.K., and Williams, D.L. (1998). A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J. Biol. Chem. 273, 4206-4212. https://doi.org/10.1074/jbc.273.7.4206
- Dietschy, J.M., and Turley, S.D. (2004). Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375-1397. https://doi.org/10.1194/jlr.R400004-JLR200
- Dumanis, S.B., Tesoriero, J.A., Babus, L.W., Nguyen, M.T., Trotter, J.H., Ladu, M.J., Weeber, E.J., Turner, R.S., Xu, B., Rebeck, G.W., et al. (2009). ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci. 29, 15317-15322. https://doi.org/10.1523/JNEUROSCI.4026-09.2009
- Ethell, I.M., and Yamaguchi, Y. (1999). Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575-586. https://doi.org/10.1083/jcb.144.3.575
- Ethell, I.M., Irie, F., Kalo, M.S., Couchman, J.R., Pasquale, E.B., and Yamaguchi, Y. (2001). EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001-1013. https://doi.org/10.1016/S0896-6273(01)00440-8
- Fagan, A.M., Bu, G., Sun, Y., Daugherty, A., and Holtzman, D.M. (1996). Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J. Biol. Chem. 271, 30121-30125. https://doi.org/10.1074/jbc.271.47.30121
- Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., and van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349-1356. https://doi.org/10.1001/jama.1997.03550160069041
- Golde, T.E., Petrucelli, L., and Lewis, J. (2010). Targeting Abeta and tau in Alzheimer's disease, an early interim report. Exp. Neurol. 223, 252-266. https://doi.org/10.1016/j.expneurol.2009.07.035
- Gordon, I., Grauer, E., Genis, I., Sehayek, E., and Michaelson, D.M. (1995). Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci. Lett. 199, 1-4. https://doi.org/10.1016/0304-3940(95)12006-P
- Grootendorst, J., Bour, A., Vogel, E., Kelche, C., Sullivan, P.M., Dodart, J.-C., Bales, K., and Mathis, C. (2005) Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav. Brain Res. 159, 1-14. https://doi.org/10.1016/j.bbr.2004.09.019
- Gu, J., Firestein, B.L., and Zheng, J.Q. (2008). Microtubules in dendritic spine development. J. Neurosci. 28, 12120-12124. https://doi.org/10.1523/JNEUROSCI.2509-08.2008
- Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid betapeptide. Nat. Rev. Mol. Cell Biol. 8, 101-112.
- Hartman, R.E., Wozniak, D.F., Nardi, A., Olney, J.W., Sartorius, L., and Holtzman, D.M. (2001). Behavioral phenotyping of GFAPApoE3 and -ApoE4 transgenic mice: ApoE4 mice show profound working memory impairments in the absence of Alzheimer's-like neuropathology. Exp. Neurol. 170, 326-344. https://doi.org/10.1006/exnr.2001.7715
- Hoe, H.S., Freeman, J., and Rebeck, G.W. (2006). Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Mol. Neurodegener. 1, 18. https://doi.org/10.1186/1750-1326-1-18
- Holtzman, D.M., Pitas, R.E., Kilbridge, J., Nathan, B., Mahley, R.W., Bu, G., and Schwartz, A.L. (1995). Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc. Natl. Acad. Sci. USA 92, 9480-9484. https://doi.org/10.1073/pnas.92.21.9480
- Hu, X., Viesselmann, C., Nam, S., Merriam, E., and Dent, E.W. (2008). Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094-13105. https://doi.org/10.1523/JNEUROSCI.3074-08.2008
- Hudry, E., Dashkoff, J., Roe, A.D., Takeda, S., Koffie, R.M., Hashimoto, T., Scheel, M., Spires-Jones, T., Arbel-Ornath, M., Betensky, R., et al. (2013). Gene transfer of human apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 5, 212ra161. https://doi.org/10.1126/scitranslmed.3007000
- Jaworski, J., Kapitein, L.C., Gouveia, S.M., Dortland, B.R., Wulf, P.S., Grigoriev, I., Camera, P., Spangler, S.A., Di Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85-100. https://doi.org/10.1016/j.neuron.2008.11.013
- Ji, Z.S., Pitas, R.E., and Mahley, R.W. (1998). Differential cellular accumulation/retention of apolipoprotein E mediated by cell surface heparan sulfate proteoglycans. Apolipoproteins E3 and E2 greater than e4. J. Biol. Chem. 273, 13452-13460. https://doi.org/10.1074/jbc.273.22.13452
- Ji, Y., Gong, Y., Gan, W., Beach, T., Holtzman, D.M., and Wisniewski, T. (2003). Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuro Sci. 122, 305-315.
- Jiang, Q., Lee, C.Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T.M., Collins, J.L., et al. (2008). ApoE promotes the proteolytic degradation of Abeta. Neuron 58, 681-693. https://doi.org/10.1016/j.neuron.2008.04.010
- Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D.W., Golde, T., and McGowan, E. (2007). Abeta40 inhibits amyloid deposition in vivo. J. Neurosci. 27, 627-633. https://doi.org/10.1523/JNEUROSCI.4849-06.2007
- Kim, J., Basak, J.M., and Holtzman, D.M. (2009a). The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303. https://doi.org/10.1016/j.neuron.2009.06.026
- Kim, J., Castellano, J.M., Jiang, H., Basak, J.M., Parsadanian, M., Pham, V., Mason, S.M., Paul, S.M., and Holtzman, D.M. (2009b). Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A[beta] clearance. Neuron 64, 632-644. https://doi.org/10.1016/j.neuron.2009.11.013
- Kim, J., Jiang, H., Park, S., Eltorai, A., Stewart, F., Yoon, H., Basak, J.M., Finn, M.B., and Holtzman, D.M. (2011). Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-beta amyloidosis. J. Neurosci. 31, 18007-18012. https://doi.org/10.1523/JNEUROSCI.3773-11.2011
- Kim, J., Eltorai, A.E., Jiang, H., Liao, F., Verghese, P.B., Kim, J., Stewart, F.R., Basak, J.M., and Holtzman, D.M. (2012a). AntiapoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J. Exp. Med. 209, 2149-2156. https://doi.org/10.1084/jem.20121274
- Kim, J., Yoon, H., Ramírez, C., Lee, S., Hoe, H., Fernandez-Hernando, C., and Kim, J. (2012b). miR-106b impairs cholesterol efflux and increases A levels by repressing ABCA1 expression. Exp. Neurol. 235, 476-483. https://doi.org/10.1016/j.expneurol.2011.11.010
- Kinnunen, T., Raulo, E., Nolo, R., Maccarana, M., Lindahl, U., and Rauvala, H. (1996). Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J. Biol. Chem. 271, 2243-2248. https://doi.org/10.1074/jbc.271.4.2243
- Kinnunen, T., Kaksonen, M., Saarinen, J., Kalkkinen, N., Peng, H.B., and Rauvala, H. (1998). Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J. Biol. Chem. 273, 10702-10708. https://doi.org/10.1074/jbc.273.17.10702
- Kitamura, H.W., Hamanaka, H., Watanabe, M., Wada, K., Yamazaki, C., Fujita, S.C., Manabe, T., and Nukina, N. (2004). Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci. Lett. 369, 173-178. https://doi.org/10.1016/j.neulet.2004.07.084
- Kornecook, T.J., McKinney, A.P., Ferguson, M.T., and Dodart, J.C. (2010). Isoform-specific effects of apolipoprotein E on cognitive performance in targeted-replacement mice overexpressing human APP. Genes Brain Behav. 9, 182-192. https://doi.org/10.1111/j.1601-183X.2009.00545.x
- Kowal, R.C., Herz, J., Weisgraber, K.H., Mahley, R.W., Brown, M.S., and Goldstein, J.L. (1990). Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265, 10771-10779.
- Kramar, E.A., Chen, L.Y., Brandon, N.J., Rex, C.S., Liu, F., Gall, C.M., and Lynch, G. (2009). Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. J. Neurosci. 29, 12982-12993. https://doi.org/10.1523/JNEUROSCI.3059-09.2009
- Kuszczyk, M.A., Sanchez, S., Pankiewicz, J., Kim, J., Duszczyk, M., Guridi, M., Asuni, A.A., Sullivan, P.M., Holtzman, D.M., and Sadowski, M.J. (2013). Blocking the interaction between apolipoprotein E and Abeta reduces intraneuronal accumulation of Abeta and inhibits synaptic degeneration. Am. J. Pathol. 182, 1750-1768. https://doi.org/10.1016/j.ajpath.2013.01.034
- Lane-Donovan, C., Philips, Gary T., and Herz, J. (2014). More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83, 771-787. https://doi.org/10.1016/j.neuron.2014.08.005
- Lanz, T.A., Carter, D.B., and Merchant, K.M. (2003). Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis. 13, 246-253. https://doi.org/10.1016/S0969-9961(03)00079-2
- Liao, F., Hori, Y., Hudry, E., Bauer, A.Q., Jiang, H., Mahan, T.E., Lefton, K.B., Zhang, T.J., Dearborn, J.T., Kim, J., et al. (2014). Anti-ApoE antibody given after plaque onset decreases Abeta accumulation and improves brain function in a mouse model of Abeta amyloidosis. J. Neurosci. 34, 7281-7292. https://doi.org/10.1523/JNEUROSCI.0646-14.2014
- Libeu, C.P., Lund-Katz, S., Phillips, M.C., Wehrli, S., Hernaiz, M.J., Capila, I., Linhardt, R.J., Raffai, R.L., Newhouse, Y.M., Zhou, F., et al. (2001). New insights into the heparan sulfate proteoglycanbinding activity of apolipoprotein E. J. Biol. Chem. 276, 39138-39144. https://doi.org/10.1074/jbc.M104746200
- Mahley, R.W., and Huang, Y. (2012). Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76, 871-885. https://doi.org/10.1016/j.neuron.2012.11.020
- Mak, A.C., Pullinger, C.R., Tang, L.F., Wong, J.S., Deo, R.C., Schwarz, J.M., Gugliucci, A., Movsesyan, I., Ishida, B.Y., Chu, C., et al. (2014). Effects of the absence of apolipoprotein E on lipoproteins, neurocognitive function, and retinal runction. JAMA Neurol. (in press).
- Mann, K.M., Thorngate, F.E., Katoh-Fukui, Y., Hamanaka, H., Williams, D.L., Fujita, S., and Lamb, B.T. (2004). Independent effects of APOE on cholesterol metabolism and brain Abeta levels in an Alzheimer disease mouse model. Hum. Mol. Genet. 13, 1959-1968. https://doi.org/10.1093/hmg/ddh199
- Masliah, E., Samuel, W., Veinbergs, I., Mallory, M., Mante, M., and Saitoh, T. (1997). Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res. 751, 307-314. https://doi.org/10.1016/S0006-8993(96)01420-5
- McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M.P., Beard, J., Das, P., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191-199. https://doi.org/10.1016/j.neuron.2005.06.030
- Minami, S.S., Cordova, A., Cirrito, J.R., Tesoriero, J.A., Babus, L.W., Davis, G.C., Dakshanamurthy, S., Turner, R.S., Pak, D.T., Rebeck, G.W., et al. (2010). ApoE mimetic peptide decreases Abeta production in vitro and in vivo. Mol. Neurodegener. 5, 16. https://doi.org/10.1186/1750-1326-5-16
- Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991). Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 541, 163-166. https://doi.org/10.1016/0006-8993(91)91092-F
- Narita, M., Bu, G., Holtzman, D.M., and Schwartz, A.L. (1997). The low-density lipoprotein receptor-related protein, a multifunctional apolipoprotein E receptor, modulates hippocampal neurite development. J. Neurochem. 68, 587-595.
- Nathan, B.P., Bellosta, S., Sanan, D.A., Weisgraber, K.H., Mahley, R.W., and Pitas, R.E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264, 850-852. https://doi.org/10.1126/science.8171342
- Nathan, B.P., Jiang, Y., Wong, G.K., Shen, F., Brewer, G.J., and Struble, R.G. (2002). Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res. 928, 96-105. https://doi.org/10.1016/S0006-8993(01)03367-4
- Nichol, K., Deeny, S.P., Seif, J., Camaclang, K., and Cotman, C.W. (2009). Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 5, 287-294. https://doi.org/10.1016/j.jalz.2009.02.006
- Niu, S., Yabut, O., and D'Arcangelo, G. (2008). The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J. Neurosci. 28, 10339-10348. https://doi.org/10.1523/JNEUROSCI.1917-08.2008
- Osherovich, L. (2009). The APOE4 conundrum. SciBX 2, 1-3.
- Pankiewicz, J.E., Guridi, M., Kim, J., Asuni, A.A., Sanchez, S., Sullivan, P.M., Holtzman, D.M., and Sadowski, M.J. (2014). Blocking the apoE/Abeta interaction ameliorates Abeta-related pathology in APOE2 and 4 targeted replacement Alzheimer model mice. Acta Neuropathol. Commun. 2, 75.
- Penzes, P., and Jones, K.A. (2008). Dendritic spine dynamics--a key role for kalirin-7. Trends Neurosci. 31, 419-427. https://doi.org/10.1016/j.tins.2008.06.001
- Puttfarcken, P.S., Manelli, A.M., Falduto, M.T., Getz, G.S., and LaDu, M.J. (1997). Effect of apolipoprotein E on neurite outgrowth and beta-amyloid-induced toxicity in developing rat primary hippocampal cultures. J. Neurochem. 68, 760-769.
- Raber, J., Wong, D., Buttini, M., Orth, M., Bellosta, S., Pitas, R.E., Mahley, R.W., and Mucke, L. (1998). Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl. Acad. Sci. USA 95, 10914-10919. https://doi.org/10.1073/pnas.95.18.10914
- Raber, J., Wong, D., Yu, G.Q., Buttini, M., Mahley, R.W., Pitas, R.E., and Mucke, L. (2000). Apolipoprotein E and cognitive performance. Nature 404, 352-354.
- Ramaswamy, G., Xu, Q., Huang, Y., and Weisgraber, K.H. (2005). Effect of domain interaction on apolipoprotein E levels in mouse brain. J. Neurosci. 25, 10658-10663. https://doi.org/10.1523/JNEUROSCI.1922-05.2005
- Rex, C.S., Gavin, C.F., Rubio, M.D., Kramar, E.A., Chen, L.Y., Jia, Y., Huganir, R.L., Muzyczka, N., Gall, C.M., and Miller, C.A. (2010). Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603-617. https://doi.org/10.1016/j.neuron.2010.07.016
- Riddell, D.R., Zhou, H., Atchison, K., Warwick, H.K., Atkinson, P.J., Jefferson, J., Xu, L., Aschmies, S., Kirksey, Y., Hu, Y., et al. (2008). Impact of Apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J. Neurosci. 28, 11445-11453. https://doi.org/10.1523/JNEUROSCI.1972-08.2008
- Ruiz, J., Kouiavskaia, D., Migliorini, M., Robinson, S., Saenko, E.L., Gorlatova, N., Li, D., Lawrence, D., Hyman, B.T., Weisgraber, K.H., et al. (2005). The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J. Lipid Res. 46, 1721-1731. https://doi.org/10.1194/jlr.M500114-JLR200
- Sadowski, M., Pankiewicz, J., Scholtzova, H., Ripellino, J.A., Li, Y., Schmidt, S.D., Mathews, P.M., Fryer, J.D., Holtzman, D.M., Sigurdsson, E.M., et al. (2004). A synthetic peptide blocking the Apolipoprotein E/{beta}-amyloid binding mitigates {beta}-amyloid toxicity and fibril formation in vitro and reduces {beta}-amyloid plaques in transgenic mice. Am. J. Pathol. 165, 937-948. https://doi.org/10.1016/S0002-9440(10)63355-X
- Sadowski, M.J., Pankiewicz, J., Scholtzova, H., Mehta, P.D., Prelli, F., Quartermain, D., and Wisniewski, T. (2006). Blocking the apolipoprotein E/amyloid-{beta} interaction as a potential therapeutic approach for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 103, 18787-18792. https://doi.org/10.1073/pnas.0604011103
- Selkoe, D.J. (2002). Alzheimer's disease is a synaptic failure. Science 298, 789-791. https://doi.org/10.1126/science.1074069
- Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866-2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007
- Shi, Y., Mantuano, E., Inoue, G., Campana, W.M., and Gonias, S.L. (2009). Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci. Signal. 2, ra18.
- Siegel, J.A., Haley, G.E., and Raber, J. (2012). Apolipoprotein E isoform-dependent effects on anxiety and cognition in female TR mice. Neurobiol. Aging 33, 345-358. https://doi.org/10.1016/j.neurobiolaging.2010.03.002
- Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., and Esko, J.D. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 119, 3236-3245.
- Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.M., Jakes, R., Huang, D.Y., Pericak-Vance, M., Schmechel, D., and Roses, A.D. (1994). Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 11183-11186. https://doi.org/10.1073/pnas.91.23.11183
- Sun, Y., Wu, S., Bu, G., Onifade, M.K., Patel, S.N., LaDu, M.J., Fagan, A.M., and Holtzman, D.M. (1998). Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocytespecific expression and differing biological effects of astrocytesecreted apoE3 and apoE4 lipoproteins. J. Neurosci. 18, 3261-3272.
- Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A. and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572-580. https://doi.org/10.1002/ana.410300410
- Teter, B., Xu, P.T., Gilbert, J.R., Roses, A.D., Galasko, D., and Cole, G.M. (1999). Human apolipoprotein E isoform-specific differences in neuronal sprouting in organotypic hippocampal culture. J. Neurochem. 73, 2613-2616.
- Teter, B., Xu, P.T., Gilbert, J.R., Roses, A.D., Galasko, D., and Cole, G.M. (2002). Defective neuronal sprouting by human apolipoprotein E4 is a gain-of-negative function. J. Neurosci. Res. 68, 331-336. https://doi.org/10.1002/jnr.10221
- Trommer, B.L., Shah, C., Yun, S.H., Gamkrelidze, G., Pasternak, E.S., Ye, G.L., Sotak, M., Sullivan, P.M., Pasternak, J.F., and LaDu, M.J. (2004). ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 15, 2655-2658. https://doi.org/10.1097/00001756-200412030-00020
- Trommer, B.L., Shah, C., Yun, S.H., Gamkrelidze, G., Pasternak, E.S., Stine, W.B., Manelli, A., Sullivan, P., Pasternak, J.F., and LaDu, M.J. (2005). ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1-42. Neurobiol. Dis. 18, 75-82. https://doi.org/10.1016/j.nbd.2004.08.011
- Veinbergs, I., Mallory, M., Mante, M., Rockenstein, E., Gilbert, J.R., and Masliah, E. (1999). Differential neurotrophic effects of apolipoprotein E in aged transgenic mice. Neurosci. Lett. 265, 218-222. https://doi.org/10.1016/S0304-3940(99)00243-8
- Vitek, M.P., Brown, C.M., and Colton, C.A. (2007). APOE genotypespecific differences in the innate immune response. Neurobiol. Aging 30, 1350-1360.
- Wahrle, S.E., Jiang, H., Parsadanian, M., Kim, J., Li, A., Knoten, A., Jain, S., Hirsch-Reinshagen, V., Wellington, C.L., Bales, K.R., et al. (2008). Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Invest. 118, 671-682.
- Walsh, D.M., and Selkoe, D.J. (2004). Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44, 181-193. https://doi.org/10.1016/j.neuron.2004.09.010
- Wang, C., Wilson, W.A., Moore, S.D., Mace, B.E., Maeda, N., Schmechel, D.E., and Sullivan, P.M. (2005). Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis. 18, 390-398. https://doi.org/10.1016/j.nbd.2004.10.013
- White, F., Nicoll, J.A., Roses, A.D., and Horsburgh, K. (2001). Impaired neuronal plasticity in transgenic mice expressing human apolipoprotein E4 compared to E3 in a model of entorhinal cortex lesion. Neurobiol. Dis. 8, 611-625. https://doi.org/10.1006/nbdi.2001.0401
- Wilsie, L.C., Gonzales, A.M., and Orlando, R.A. (2006). Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, nonclathrin-mediated pathway. Lipids Health Dis. 5, 23. https://doi.org/10.1186/1476-511X-5-23
Cited by
- ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations vol.40, pp.10, 2015, https://doi.org/10.1038/npp.2015.95
- A Mitochondrial Role of SV2a Protein in Aging and Alzheimer’s Disease: Studies with Levetiracetam vol.50, pp.1, 2015, https://doi.org/10.3233/JAD-150687
- Altered Energy Metabolism Pathways in the Posterior Cingulate in Young Adult Apolipoprotein E ɛ4 Carriers vol.53, pp.1, 2016, https://doi.org/10.3233/JAD-151205
- The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity vol.758, 2015, https://doi.org/10.1016/j.ejphar.2015.03.016
- MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease vol.1861, pp.12, 2016, https://doi.org/10.1016/j.bbalip.2016.04.020
- The Neurobiology and Age-Related Prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer’s Disease Cohorts vol.60, pp.3, 2016, https://doi.org/10.1007/s12031-016-0804-x
- Traumatic brain injuries vol.2, 2016, https://doi.org/10.1038/nrdp.2016.84
- Palmitoylation in Alzheimers disease and other neurodegenerative diseases vol.111, 2016, https://doi.org/10.1016/j.phrs.2016.06.008
- Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice vol.292, 2015, https://doi.org/10.1016/j.neuroscience.2015.02.031
- Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer's disease patients vol.12, 2017, https://doi.org/10.1016/j.redox.2017.04.010
- Co-injection of Aβ1-40 and ApoE4 impaired spatial memory and hippocampal long-term potentiation in rats vol.648, 2017, https://doi.org/10.1016/j.neulet.2017.03.043
- Profiling microRNA from Brain by Microarray in a Transgenic Mouse Model of Alzheimer’s Disease vol.2017, 2017, https://doi.org/10.1155/2017/8030369
- Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? vol.77, 2017, https://doi.org/10.1016/j.neubiorev.2017.01.046
- Apolipoprotein E4: A Risk Factor for Successful Cognitive Aging vol.15, pp.3, 2016, https://doi.org/10.12779/dnd.2016.15.3.61
- APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes vol.26, pp.14, 2017, https://doi.org/10.1093/hmg/ddx155
- Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia vol.53, pp.4, 2016, https://doi.org/10.3233/JAD-160305
- Liver X receptors regulate cerebrospinal fluid production vol.21, pp.6, 2016, https://doi.org/10.1038/mp.2015.133
- Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease vol.6, pp.1, 2016, https://doi.org/10.1038/srep22962
- Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory vol.126, 2015, https://doi.org/10.1016/j.nlm.2015.10.009
- Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes vol.23, pp.12, 2016, https://doi.org/10.1016/j.chembiol.2016.10.015
- The Immune System and Neuroinflammation as Potential Sources of Blood-Based Biomarkers for Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease vol.7, pp.5, 2016, https://doi.org/10.1021/acschemneuro.6b00042
- Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene vol.23, pp.9, 2017, https://doi.org/10.1111/cns.12720
- Towards defining the Mechanisms of Alzheimer’s disease based on a contextual analysis of molecular pathways vol.3, pp.1, 2016, https://doi.org/10.3934/genet.2016.1.25
- Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172161
- Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer’s disease patients vol.37, pp.10, 2016, https://doi.org/10.1007/s10072-016-2647-1
- Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons vol.57, pp.4, 2017, https://doi.org/10.3233/JAD-160612
- Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease vol.7, 2017, https://doi.org/10.1038/srep42270
- Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes vol.113, pp.36, 2016, https://doi.org/10.1073/pnas.1609896113
- rs3851179 Polymorphism at 5′ to the PICALM Gene is Associated with Alzheimer and Parkinson Diseases in Brazilian Population vol.19, pp.2-3, 2017, https://doi.org/10.1007/s12017-017-8444-z
- A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0132300
- LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.30498
- Impact of amyloid-beta changes on cognitive outcomes in Alzheimer’s disease: analysis of clinical trials using a quantitative systems pharmacology model vol.10, pp.1, 2018, https://doi.org/10.1186/s13195-018-0343-5
- Aging, cognitive decline, apolipoprotein E and docosahexaenoic acid metabolism vol.25, pp.4, 2018, https://doi.org/10.1051/ocl/2018032
- LRP8 is overexpressed in estrogen-negative breast cancers and a potential target for these tumors vol.8, pp.1, 2018, https://doi.org/10.1002/cam4.1923
- Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides vol.8, pp.4, 2014, https://doi.org/10.15252/emmm.201505846
- Association between polymorphisms in the promoter region of the apolipoprotein E (APOE) gene and Alzheimer's disease: A meta-analysis vol.16, pp.None, 2014, https://doi.org/10.17179/excli2017-289
- Multi-Protection of DL0410 in Ameliorating Cognitive Defects in D-Galactose Induced Aging Mice vol.9, pp.None, 2014, https://doi.org/10.3389/fnagi.2017.00409
- Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease vol.28, pp.1, 2014, https://doi.org/10.1097/mol.0000000000000383
- Cell Biology of Astrocyte-Synapse Interactions vol.96, pp.3, 2014, https://doi.org/10.1016/j.neuron.2017.09.056
- Effects of Newly Synthesized Recombinant Human Amyloid-β Complexes and Poly-Amyloid-β Fibers on Cell Apoptosis and Cognitive Decline vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1707.07003
- A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer’s disease vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13831-0
- CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14204-3
- Alzheimer’s Disease, Oligomers, and Inflammation vol.62, pp.3, 2014, https://doi.org/10.3233/jad-170819
- Atrophy in Distributed Networks Predicts Cognition in Alzheimer’s Disease and Type 2 Diabetes vol.65, pp.4, 2018, https://doi.org/10.3233/jad-180570
- Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology vol.141, pp.9, 2014, https://doi.org/10.1093/brain/awy189
- Apolipoprotein E mimetic peptide CN-105 improves outcome in a murine model of SAH vol.3, pp.4, 2018, https://doi.org/10.1136/svn-2018-000152
- Integrated Genomic Analysis Revealed Associated Genes for Alzheimer’s Disease in APOE4 Non-Carriers vol.16, pp.8, 2014, https://doi.org/10.2174/1567205016666190823124724
- Developmental roles of microglia: A window into mechanisms of disease vol.248, pp.1, 2014, https://doi.org/10.1002/dvdy.1
- APOE genotype, hypertension severity and outcomes after intracerebral haemorrhage vol.1, pp.1, 2019, https://doi.org/10.1093/braincomms/fcz018
- MiR-409-5p as a Regulator of Neurite Growth Is Down Regulated in APP/PS1 Murine Model of Alzheimer’s Disease vol.13, pp.None, 2014, https://doi.org/10.3389/fnins.2019.01264
- The Role of Apolipoprotein E Isoforms in Alzheimer’s Disease vol.68, pp.2, 2014, https://doi.org/10.3233/jad-180740
- The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer’s Disease vol.8, pp.10, 2019, https://doi.org/10.3390/jcm8101639
- ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease vol.42, pp.11, 2014, https://doi.org/10.14348/molcells.2019.0200
- ApoE4: an emerging therapeutic target for Alzheimer’s disease vol.17, pp.1, 2014, https://doi.org/10.1186/s12916-019-1299-4
- Alzheimer’s in a dish - induced pluripotent stem cell-based disease modeling vol.8, pp.1, 2019, https://doi.org/10.1186/s40035-019-0161-0
- A modeling informed quantitative approach to salvage clinical trials interrupted due to COVID‐19 vol.6, pp.1, 2014, https://doi.org/10.1002/trc2.12053
- Learning from amyloid trials in Alzheimer's disease. A virtual patient analysis using a quantitative systems pharmacology approach vol.16, pp.6, 2020, https://doi.org/10.1002/alz.12082
- Simulating the Effects of Common Comedications and Genotypes on Alzheimer’s Cognitive Trajectory Using a Quantitative Systems Pharmacology Approach vol.78, pp.1, 2014, https://doi.org/10.3233/jad-200688
- APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE‐TR mice vol.35, pp.5, 2021, https://doi.org/10.1096/fj.202002621rr
- Pharmacological Strategies to Improve Dendritic Spines in Alzheimer’s Disease vol.82, pp.suppl1, 2014, https://doi.org/10.3233/jad-201106
- Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review vol.72, pp.None, 2014, https://doi.org/10.1016/j.arr.2021.101496
- Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China vol.16, pp.1, 2021, https://doi.org/10.1186/s13018-021-02522-2